10,567 research outputs found

    Beam-searching and Transmission Scheduling in Millimeter Wave Communications

    Full text link
    Millimeter wave (mmW) wireless networks are capable to support multi-gigabit data rates, by using directional communications with narrow beams. However, existing mmW communications standards are hindered by two problems: deafness and single link scheduling. The deafness problem, that is, a misalignment between transmitter and receiver beams, demands a time consuming beam-searching operation, which leads to an alignment-throughput tradeoff. Moreover, the existing mmW standards schedule a single link in each time slot and hence do not fully exploit the potential of mmW communications, where directional communications allow multiple concurrent transmissions. These two problems are addressed in this paper, where a joint beamwidth selection and power allocation problem is formulated by an optimization problem for short range mmW networks with the objective of maximizing effective network throughput. This optimization problem allows establishing the fundamental alignment-throughput tradeoff, however it is computationally complex and requires exact knowledge of network topology, which may not be available in practice. Therefore, two standard-compliant approximation solution algorithms are developed, which rely on underestimation and overestimation of interference. The first one exploits directionality to maximize the reuse of available spectrum and thereby increases the network throughput, while imposing almost no computational complexity. The second one is a more conservative approach that protects all active links from harmful interference, yet enhances the network throughput by 100% compared to the existing standards. Extensive performance analysis provides useful insights on the directionality level and the number of concurrent transmissions that should be pursued. Interestingly, extremely narrow beams are in general not optimal.Comment: 5 figures, 7 pages, accepted in ICC 201

    On distributed scheduling in wireless networks exploiting broadcast and network coding

    Get PDF
    In this paper, we consider cross-layer optimization in wireless networks with wireless broadcast advantage, focusing on the problem of distributed scheduling of broadcast links. The wireless broadcast advantage is most useful in multicast scenarios. As such, we include network coding in our design to exploit the throughput gain brought in by network coding for multicasting. We derive a subgradient algorithm for joint rate control, network coding and scheduling, which however requires centralized link scheduling. Under the primary interference model, link scheduling problem is equivalent to a maximum weighted hypergraph matching problem that is NP-complete. To solve the scheduling problem distributedly, locally greedy and randomized approximation algorithms are proposed and shown to have bounded worst-case performance. With random network coding, we obtain a fully distributed cross-layer design. Numerical results show promising throughput gain using the proposed algorithms, and surprisingly, in some cases even with less complexity than cross-layer design without broadcast advantage

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201

    Flow Allocation for Maximum Throughput and Bounded Delay on Multiple Disjoint Paths for Random Access Wireless Multihop Networks

    Full text link
    In this paper, we consider random access, wireless, multi-hop networks, with multi-packet reception capabilities, where multiple flows are forwarded to the gateways through node disjoint paths. We explore the issue of allocating flow on multiple paths, exhibiting both intra- and inter-path interference, in order to maximize average aggregate flow throughput (AAT) and also provide bounded packet delay. A distributed flow allocation scheme is proposed where allocation of flow on paths is formulated as an optimization problem. Through an illustrative topology it is shown that the corresponding problem is non-convex. Furthermore, a simple, but accurate model is employed for the average aggregate throughput achieved by all flows, that captures both intra- and inter-path interference through the SINR model. The proposed scheme is evaluated through Ns2 simulations of several random wireless scenarios. Simulation results reveal that, the model employed, accurately captures the AAT observed in the simulated scenarios, even when the assumption of saturated queues is removed. Simulation results also show that the proposed scheme achieves significantly higher AAT, for the vast majority of the wireless scenarios explored, than the following flow allocation schemes: one that assigns flows on paths on a round-robin fashion, one that optimally utilizes the best path only, and another one that assigns the maximum possible flow on each path. Finally, a variant of the proposed scheme is explored, where interference for each link is approximated by considering its dominant interfering nodes only.Comment: IEEE Transactions on Vehicular Technolog
    corecore