223 research outputs found

    Energy Efficiency Optimization for D2D Communications Underlaying UAV-assisted Industrial IoT Networks with SWIPT

    Get PDF
    The industrial Internet of Things (IIoT) has been viewed as a typical application for the fifth generation (5G) mobile networks. This paper investigates the energy efficiency (EE) optimization problem for the device-to-device (D2D) communications underlaying unmanned aerial vehicles (UAVs)-assisted IIoT networks with simultaneous wireless information and power transfer (SWIPT). We aim to maximize the EE of the system while satisfying the constraints of transmission rate and transmission power budget. However, the designed EE optimization problem is non-convex involving joint optimization of the UAV’s location, beam pattern, power control and time scheduling, which is difficult to tackle directly. To solve this problem, we present a joint UAV location and resource allocation algorithm to decouple the original problem into several sub-problems and solve them sequentially. Specifically, we first apply the Dinkelbach method to transform the fraction problem to a subtractive-form one, and propose a mulitiobjective evolutionary algorithm based on decomposition (MOEA/D) based algorithm to optimize the beam pattern. We then optimize UAV’s location and power control using the successive convex optimization techniques. Finally, after solving the above variables, the original problem can be transformed into a single-variable problem with respect to the charging time, which is linear and can be tackled directly. Numerical results verify that significant EE gain can be obtained by our proposed algorithm as compared to the benchmark schemes

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed

    On the power-splitting relaying protocol for SWIPT with multiple UAVs in downlink NOMA-IoT networks

    Get PDF
    Unmanned aerial vehicle (UAV) communication and non-orthogonal multiple access (NOMA) are two promising technologies for wireless 5G networks and beyond. The UAVs can be used as flying base stations to form line-of-sight communication links to the Internet of things devices (IDs) and to enhance the performance of usual terrestrial cellular networks. Moreover, the UAVs can also be deployed as flying relay nodes for forwarding data from a base station (BS) to the IDs. On the other hand, non-orthogonal resource sharing for many concurrent users is exploited in NOMA, thus improving spectrum efficiency (SE) and supporting massive connections. The NOMA combined with energy harvesting (EH) in an amplify-and-forward (AF) with cooperative UAV systems is researched. Specifically, the UAVs act as rotary-wing relays to forward data from the BSs to two IDs. This paper focuses on the analysis of outage probabilities (OPs), system throughput, and energy efficiency (EE) for two IDs. Besides, we also do the asymptotic analysis of OPs at high signal-to-noise ratios (SNRs). Furthermore, this paper also inspects the impacts of the UAV-based relaying on the OP, system throughput, and EE of the proposed NOMA scheme. The derived asymptotic expansions show that the suggested model can enhance user fairness and the analytical results match the simulation results

    Robust Sum-Rate Maximization in Transmissive RMS Transceiver-Enabled SWIPT Networks

    Full text link
    In this paper, we propose a state-of-the-art downlink communication transceiver design for transmissive reconfigurable metasurface (RMS)-enabled simultaneous wireless information and power transfer (SWIPT) networks. Specifically, a feed antenna is deployed in the transmissive RMS-based transceiver, which can be used to implement beamforming. According to the relationship between wavelength and propagation distance, the spatial propagation models of plane and spherical waves are built. Then, in the case of imperfect channel state information (CSI), we formulate a robust system sum-rate maximization problem that jointly optimizes RMS transmissive coefficient, transmit power allocation, and power splitting ratio design while taking account of the non-linear energy harvesting model and outage probability criterion. Since the coupling of optimization variables, the whole optimization problem is non-convex and cannot be solved directly. Therefore, the alternating optimization (AO) framework is implemented to decompose the non-convex original problem. In detail, the whole problem is divided into three sub-problems to solve. For the non-convexity of the objective function, successive convex approximation (SCA) is used to transform it, and penalty function method and difference-of-convex (DC) programming are applied to deal with the non-convex constraints. Finally, we alternately solve the three sub-problems until the entire optimization problem converges. Numerical results show that our proposed algorithm has convergence and better performance than other benchmark algorithms

    Unary Coding Design for Simultaneous Wireless Information and Power Transfer with Practical M-QAM

    Get PDF
    Relying on the propagation of modulated radio-frequency (RF) signals, we can achieve simultaneous wireless information and power transfer (SWIPT) to support low-power communication devices. In this paper, we proposed a unary coding based SWIPT encoder by considering a practical M-QAM. Markov chains are exploited for characterising coherent binary information source and for modelling the generation process of modulated symbols. Therefore, both mutual information and the average energy harvesting performance at the SWIPT receiver are analysed in semi-closed-form. With the aid of the genetic algorithm, the sub-optimal codeword distribution of the coded information source is obtained by maximising the average energy harvesting performance, while satisfying the requirement of the mutual information. Simulation results demonstrate the advantage of the SWIPT encoder. Moreover, a higher-level unary code and a lower-order M-QAM results in higher WPT performance, when the maximum transmit power of the modulated symbol is fixed

    Joint Interleaver and Modulation Design For Multi-User SWIPT-NOMA

    Get PDF
    Radio frequency (RF) signals can be relied upon for conventional wireless information transfer (WIT) and for challenging wireless power transfer (WPT), which triggers the significant research interest in the topic of simultaneous wireless information and power transfer (SWIPT). By further exploiting the advanced non-orthogonal-multiple-access (NOMA) technique, we are capable of improving the spectrum efficiency of the resource-limited SWIPT system. In our SWIPT system, a hybrid access point (H-AP) superimposes the modulated symbols destined to multiple WIT users by exploiting the power-domain NOMA, while WPT users are capable of harvesting the energy carried by the superposition symbols. In order to maximize the amount of energy transferred to the WPT users, we propose a joint design of the energy interleaver and the constellation rotation-based modulator in the symbol-block level by constructively superimposing the symbols destined to the WIT users in the power domain. Furthermore, a transmit power allocation scheme is proposed to guarantee the symbol-error-ratio (SER) of all the WIT users. By considering the sensitivity of practical energy harvesters, simulation results demonstrate that our scheme is capable of substantially increasing the WPT performance without any remarkable degradation of the WIT performance

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions
    • …
    corecore