5 research outputs found

    Resilient Computing Courseware

    Get PDF
    This Deliverable describes the courseware in support to teaching Resilient Computing in a Curriculum for an MSc track following the scheme of the Bologna process. The development of the supporting material for such a curriculum has required a rather intensive activity that involved not only the partners in ReSIST but also a much larger worldwide community with the aim of identifying available updated support material that can be used to build a progressive and methodical line of teaching to accompany students and interested persons in a profitable learning process. All this material is on-line on the official ReSIST web site http://www.resistnoe.org/, can be viewed and downloaded for use in a class and constitutes, at our knowledge, the first, almost comprehensive attempt, to build a database of support material related to Dependable and Resilient Computing.European Commission through NoE IST-4-026764-NOE (ReSIST

    Modelling and performability evaluation of Wireless Sensor Networks

    Get PDF
    This thesis presents generic analytical models of homogeneous clustered Wireless Sensor Networks (WSNs) with a centrally located Cluster Head (CH) coordinating cluster communication with the sink directly or through other intermediate nodes. The focus is to integrate performance and availability studies of WSNs in the presence of sensor nodes and channel failures and repair/replacement. The main purpose is to enhance improvement of WSN Quality of Service (QoS). Other research works also considered in this thesis include modelling of packet arrival distribution at the CH and intermediate nodes, and modelling of energy consumption at the sensor nodes. An investigation and critical analysis of wireless sensor network architectures, energy conservation techniques and QoS requirements are performed in order to improve performance and availability of the network. Existing techniques used for performance evaluation of single and multi-server systems with several operative states are investigated and analysed in details. To begin with, existing approaches for independent (pure) performance modelling are critically analysed with highlights on merits and drawbacks. Similarly, pure availability modelling approaches are also analysed. Considering that pure performance models tend to be too optimistic and pure availability models are too conservative, performability, which is the integration of performance and availability studies is used for the evaluation of the WSN models developed in this study. Two-dimensional Markov state space representations of the systems are used for performability modelling. Following critical analysis of the existing solution techniques, spectral expansion method and system of simultaneous linear equations are developed and used to solving the proposed models. To validate the results obtained with the two techniques, a discrete event simulation tool is explored. In this research, open queuing networks are used to model the behaviour of the CH when subjected to streams of traffic from cluster nodes in addition to dynamics of operating in the various states. The research begins with a model of a CH with an infinite queue capacity subject to failures and repair/replacement. The model is developed progressively to consider bounded queue capacity systems, channel failures and sleep scheduling mechanisms for performability evaluation of WSNs. Using the developed models, various performance measures of the considered system including mean queue length, throughput, response time and blocking probability are evaluated. Finally, energy models considering mean power consumption in each of the possible operative states is developed. The resulting models are in turn employed for the evaluation of energy saving for the proposed case study model. Numerical solutions and discussions are presented for all the queuing models developed. Simulation is also performed in order to validate the accuracy of the results obtained. In order to address issues of performance and availability of WSNs, current research present independent performance and availability studies. The concerns resulting from such studies have therefore remained unresolved over the years hence persistence poor system performance. The novelty of this research is a proposed integrated performance and availability modelling approach for WSNs meant to address challenges of independent studies. In addition, a novel methodology for modelling and evaluation of power consumption is also offered. Proposed model results provide remarkable improvement on system performance and availability in addition to providing tools for further optimisation studies. A significant power saving is also observed from the proposed model results. In order to improve QoS for WSN, it is possible to improve the proposed models by incorporating priority queuing in a mixed traffic environment. A model of multi-server system is also appropriate for addressing traffic routing. It is also possible to extend the proposed energy model to consider other sleep scheduling mechanisms other than On-demand proposed herein. Analysis and classification of possible arrival distribution of WSN packets for various application environments would be a great idea for enabling robust scientific research

    Designing for adaptability in architecture

    Get PDF
    The research is framed on the premise that designing buildings that can adapt by accommodating change easier and more cost-effectively provides an effective means to a desired end a more sustainable built environment. In this context, adaptability can be viewed as a means to decrease the amount of new construction (reduce), (re)activate underused or vacant building stock (reuse) and enhance disassembly/ deconstruction of components (reuse, recycle) - prolonging the useful life of buildings (reduce, reuse, recycle). The aim of the research is to gain a holistic overview of the concept of adaptability in the construction industry and provide an improved framework to design for, deploy and implement adaptability. An over-arching research question was posited to guide the inquiry: how can architects understand, communicate, design for and test the concept of adaptability in the context of the design process? The research followed Dubois and Gadde s (2002) systematic combining as an over-arching approach that continuously moves between the empirical world and theoretical models allowing the co-evolution of data collection and theory from the beginning as part of a non-linear process with the objective of matching theory with reality. An initial framework was abducted from a preliminary collection of data from which a set of mixed research methods was deployed to explore adaptability (interviews, building case studies, dependency structural matrices, practitioner surveys and workshop). Emergent from the data is an expanded and revised theory on designing for adaptability consisting of concepts, models and propositions. The models illustrate many of the casual links between the physical design structure of the building (e.g. plan depth, storey height) and the soft contingencies of a messy design/construction/occupation process (e.g. procurement route, funding methods, stakeholder mindsets). In an effort to enhance building adaptability, the abducted propositions suggest a shift in the way the industry values buildings and conducts aspects of the design process and how designer s approach designing for adaptability

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets
    corecore