311 research outputs found

    Joint Orientation of Epipoles

    Get PDF
    It is known that epipolar constraint can be augmented with orientation by formulating it in the oriented projective geometry. This oriented epipolar constraint requires knowing the orientations (signs of overall scales) of epipoles and fundamental matrix. The current belief is that these orientations cannot be obtained from the fundamental matrix only and that additional information is needed, typically, a single correct point correspondence. In contrary to this, we show that fundamental matrix alone encodes orientation of epipoles up to their common scale sign. We present two formulations of this fact. The algebraic formulation gives a closed formula to compute the second epipole from fundamental matrix and the first epipole. The geometric formulation is in terms of the conic formed by intersections of corresponding epipolar lines in the common image plane; we show that the epipoles always lie on different antipodal components of the spherical interpretation of this conic. Further, we show that, under mild assumptions, fundamental matrix can discriminate between two classes of mutual position of a pair of directional cameras

    Control de robots móviles mediante visión omnidireccional utilizando la geometría de tres vistas

    Get PDF
    Este trabajo trata acerca del control visual de robot móviles. Dentro de este campo tan amplio de investigación existen dos elementos a los que prestaremos especial atención: la visión omnidireccional y los modelos geométricos multi-vista. Las cámaras omnidireccionales proporcionan información angular muy precisa, aunque presentan un grado de distorsión significativo en dirección radial. Su cualidad de poseer un amplio campo de visión hace que dichas cámaras sean apropiadas para tareas de navegación robótica. Por otro lado, el uso de los modelos geométricos que relacionan distintas vistas de una escena permite rechazar emparejamientos erróneos de características visuales entre imágenes, y de este modo robustecer el proceso de control mediante visión. Nuestro trabajo presenta dos técnicas de control visual para ser usadas por un robot moviéndose en el plano del suelo. En primer lugar, proponemos un nuevo método para homing visual, que emplea la información dada por un conjunto de imágenes de referencia adquiridas previamente en el entorno, y las imágenes que toma el robot a lo largo de su movimiento. Con el objeto de sacar partido de las cualidades de la visión omnidireccional, nuestro método de homing es puramente angular, y no emplea información alguna sobre distancia. Esta característica, unida al hecho de que el movimiento se realiza en un plano, motiva el empleo del modelo geométrico dado por el tensor trifocal 1D. En particular, las restricciones geométricas impuestas por dicho tensor, que puede ser calculado a partir de correspondencias de puntos entre tres imágenes, mejoran la robustez del control en presencia de errores de emparejamiento. El interés de nuestra propuesta reside en que el método de control empleado calcula las velocidades del robot a partir de información únicamente angular, siendo ésta muy precisa en las cámaras omnidireccionales. Además, presentamos un procedimiento que calcula las relaciones angulares entre las vistas disponibles de manera indirecta, sin necesidad de que haya información visual compartida entre todas ellas. La técnica descrita se puede clasificar como basada en imagen (image-based), dado que no precisa estimar la localización ni utiliza información 3D. El robot converge a la posición objetivo sin conocer la información métrica sobre la trayectoria seguida. Para algunas aplicaciones, como la evitación de obstáculos, puede ser necesario disponer de mayor información sobre el movimiento 3D realizado. Con esta idea en mente, presentamos un nuevo método de control visual basado en entradas sinusoidales. Las sinusoides son funciones con propiedades matemáticas bien conocidas y de variación suave, lo cual las hace adecuadas para su empleo en maniobras de aparcamiento de vehículos. A partir de las velocidades de variación sinusoidal que definimos en nuestro diseño, obtenemos las expresiones analíticas de la evolución de las variables de estado del robot. Además, basándonos en dichas expresiones, proponemos un método de control mediante realimentación del estado. La estimación del estado del robot se obtiene a partir del tensor trifocal 1D calculado entre la vista objetivo, la vista inicial y la vista actual del robot. Mediante este control sinusoidal, el robot queda alineado con la posición objetivo. En un segundo paso, efectuamos la corrección de la profundidad mediante una ley de control definida directamente en términos del tensor trifocal 1D. El funcionamiento de los dos controladores propuestos en el trabajo se ilustra mediante simulaciones, y con el objeto de respaldar su viabilidad se presentan análisis de estabilidad y resultados de simulaciones y de experimentos con imágenes reales

    Distributed consensus in multi-robot systems with visual perception

    Get PDF
    La idea de equipos de robots actuando con autonomía y de manera cooperativa está cada día más cerca de convertirse en realidad. Los sistemas multi robot pueden ejecutar tareas de gran complejidad con mayor robustez y en menos tiempo que un robot trabajando solo. Por otra parte, la coordinación de un equipo de robots introduce complicaciones que los ingenieros encargados de diseñar estos sistemas deben afrontar. Conseguir que la percepción del entorno sea consistente en todos los robots es uno de los aspectos más importantes requeridos en cualquier tarea cooperativa, lo que implica que las observaciones de cada robot del equipo deben ser transmitidas a todos los otros miembros. Cuando dos o más robots poseen información común del entorno, el equipo debe alcanzar un consenso usando toda la información disponible. Esto se debe hacer considerando las limitaciones de cada robot, teniendo en cuenta que no todos los robots se pueden comunicar unos con otros. Con este objetivo, se aborda la tarea de diseñar algoritmos distribuidos que consigan que un equipo de robots llegue a un consenso acerca de la información percibida por todos los miembros. Específicamente, nos centramos en resolver este problema cuando los robots usan la visión como sensor para percibir el entorno. Las cámaras convencionales son muy útiles a la hora de ejecutar tareas como la navegación y la construcción de mapas, esenciales en el ámbito de la robótica, gracias a la gran cantidad de información que contiene cada imagen. Sin embargo, el uso de estos sensores en un marco distribuido introduce una gran cantidad de complicaciones adicionales que deben ser abordadas si se quiere cumplir el objetivo propuesto. En esta Tesis presentamos un estudio profundo de los algoritmos distribuidos de consenso y cómo estos pueden ser usados por un equipo de robots equipados con cámaras convencionales, resolviendo los aspectos más importantes relacionados con el uso de estos sensores. En la primera parte de la Tesis nos centramos en encontrar correspondencias globales entre las observaciones de todos los robots. De esta manera, los robots son capaces de detectar que observaciones deben ser combinadas para el cálculo del consenso. También lidiamos con el problema de la robustez y la detección distribuida de espurios durante el cálculo del consenso. Para contrarrestar el incremento del tamaño de los mensajes intercambiados por los robots en las etapas anteriores, usamos las propiedades de los polinomios de Chebyshev, reduciendo el número de iteraciones que se requieren para alcanzar el consenso. En la segunda parte de la Tesis, centramos nuestra atención en los problemas de crear un mapa y controlar el movimiento del equipo de robots. Presentamos soluciones para alcanzar un consenso en estos escenarios mediante el uso de técnicas de visión por computador ampliamente conocidas. El uso de algoritmos de estructura y movimiento nos permite obviar restricciones tales como que los robots tengan que observarse unos a otros directamente durante el control o la necesidad de especificar un marco de referencia común. Adicionalmente, nuestros algoritmos tienen un comportamiento robusto cuando la calibración de las cámaras no se conoce. Finalmente, la evaluación de las propuestas se realiza utilizando un data set de un entorno urbano y robots reales con restricciones de movimiento no holónomas. Todos los algoritmos que se presentan en esta Tesis han sido diseñados para ser ejecutados de manera distribuida. En la Tesis demostramos de manera teórica las principales propiedades de los algoritmos que se proponen y evaluamos la calidad de los mismos con datos simulados e imágenes reales. En resumen, las principales contribuciones de esta Tesis son: • Un conjunto de algoritmos distribuidos que permiten a un equipo de robots equipados con cámaras convencionales alcanzar un consenso acerca de la información que perciben. En particular, proponemos tres algoritmos distribuidos con el objetivo de resolver los problemas de encontrar correspondencias globales entre la información de todos los robots, detectar y descartar información espuria, y reducir el número de veces que los robots tienen que comunicarse entre ellos antes de alcanzar el consenso. • La combinación de técnicas de consenso distribuido y estructura y movimiento en tareas de control y percepción. Se ha diseñado un algoritmo para construir un mapa topológico de manera cooperativa usando planos como características del mapa y restricciones de homografía como elementos para relacionar las observaciones de los robots. También se ha propuesto una ley de control distribuida utilizando la geometría epipolar con el objetivo de hacer que el equipo de robots alcance una orientación común sin la necesidad de observarse directamente unos a otros

    1D camera geometry and its application to the self-calibration of circular motion sequences

    Get PDF
    This paper proposes a novel method for robustly recovering the camera geometry of an uncalibrated image sequence taken under circular motion. Under circular motion, all the camera centers lie on a circle and the mapping from the plane containing this circle to the horizon line observed in the image can be modelled as a 1D projection. A 2×2 homography is introduced in this paper to relate the projections of the camera centers in two 1D views. It is shown that the two imaged circular points of the motion plane and the rotation angle between the two views can be derived directly from such a homography. This way of recovering the imaged circular points and rotation angles is intrinsically a multiple view approach, as all the sequence geometry embedded in the epipoles is exploited in the estimation of the homography for each view pair. This results in a more robust method compared to those computing the rotation angles using adjacent views only. The proposed method has been applied to self-calibrate turntable sequences using either point features or silhouettes, and highly accurate results have been achieved. © 2008 IEEE.published_or_final_versio

    A camera model for cameras with hypercentric lenses and some example applications

    Get PDF
    We propose a camera model for cameras with hypercentric lenses. Because of their geometry, hypercentric lenses allow to image the top and the sides of an object simultaneously. This makes them useful for certain inspections tasks, for which otherwise multiple images would have to be acquired and stitched together. After describing the projection geometry of hypercentric lenses, we derive a camera model for hypercentric lenses that is intuitive for the user. Furthermore, we describe how to determine the parameter values of the model by calibrating the camera with a planar calibration object. We also apply our camera model to two example applications: in the first application, we show how two cameras with hypercentric lenses can be used for dense 3D reconstruction. For an efficient reconstruction, the images are rectified such that corresponding points occur in the same image row. Standard rectification methods would result in perspective distortions in the images that would prevent stereo matching algorithms from robustly establishing correspondences. Therefore, we propose a new rectification method for objects that are approximately cylindrical in shape, which enables a robust and efficient reconstruction. In the second application, we show how to unwrap cylindrical objects to simplify further inspection tasks. For the unwrapping, the pose of the cylinder must be known. We show how to determine the pose of the cylinder based on a single camera image and based on two images of a stereo camera setup

    Generalised epipolar constraints

    Get PDF
    The frontier of a curved surface is the envelope of contour generators showing the boundary, at least locally, of the visible region swept out under viewer motion. In general, the outlines of curved surfaces (apparent contours) from different viewpoints are generated by different contour generators on the surface and hence do not provide a constraint on viewer motion. Frontier points, however, have projections which correspond to a real point on the surface and can be used to constrain viewer motion by the epipolar constraint. We show how to recover viewer motion from frontier points and generalise the ordinary epipolar constraint to deal with points, curves and apparent contours of surfaces. This is done for both continuous and discrete motion, known or unknown orientation, calibrated and uncalibrated, perspective, weak perspective and orthographic cameras. Results of an iterative scheme to recover the epipolar line structure from real image sequences using only the outlines of curved surfaces, is presented. A statistical evaluation is performed to estimate the stability of the solution. It is also shown how the full motion of the camera from a sequence of images can be obtained from the relative motion between image pairs

    3D modeling of indoor environments by a mobile platform with a laser scanner and panoramic camera

    Get PDF
    One major challenge of 3DTV is content acquisition. Here, we present a method to acquire a realistic, visually convincing D model of indoor environments based on a mobile platform that is equipped with a laser range scanner and a panoramic camera. The data of the 2D laser scans are used to solve the simultaneous lo- calization and mapping problem and to extract walls. Textures for walls and floor are built from the images of a calibrated panoramic camera. Multiresolution blending is used to hide seams in the gen- erated textures. The scene is further enriched by 3D-geometry cal- culated from a graph cut stereo technique. We present experimental results from a moderately large real environment.

    Projective 3D-reconstruction of Uncalibrated Endoscopic Images

    Get PDF
    The most common medical diagnostic method for urinary bladder cancer is cystoscopy. This inspection of the bladder is performed by a rigid endoscope, which is usually guided close to the bladder wall. This causes a very limited field of view; difficulty of navigation is aggravated by the usage of angled endoscopes. These factors cause difficulties in orientation and visual control. To overcome this problem, the paper presents a method for extracting 3D information from uncalibrated endoscopic image sequences and for reconstructing the scene content. The method uses the SURF-algorithm to extract features from the images and relates the images by advanced matching. To stabilize the matching, the epipolar geometry is extracted for each image pair using a modified RANSAC-algorithm. Afterwards these matched point pairs are used to generate point triplets over three images and to describe the trifocal geometry. The 3D scene points are determined by applying triangulation to the matched image points. Thus, these points are used to generate a projective 3D reconstruction of the scene, and provide the first step for further metric reconstructions
    corecore