10,209 research outputs found

    Query-Time Data Integration

    Get PDF
    Today, data is collected in ever increasing scale and variety, opening up enormous potential for new insights and data-centric products. However, in many cases the volume and heterogeneity of new data sources precludes up-front integration using traditional ETL processes and data warehouses. In some cases, it is even unclear if and in what context the collected data will be utilized. Therefore, there is a need for agile methods that defer the effort of integration until the usage context is established. This thesis introduces Query-Time Data Integration as an alternative concept to traditional up-front integration. It aims at enabling users to issue ad-hoc queries on their own data as if all potential other data sources were already integrated, without declaring specific sources and mappings to use. Automated data search and integration methods are then coupled directly with query processing on the available data. The ambiguity and uncertainty introduced through fully automated retrieval and mapping methods is compensated by answering those queries with ranked lists of alternative results. Each result is then based on different data sources or query interpretations, allowing users to pick the result most suitable to their information need. To this end, this thesis makes three main contributions. Firstly, we introduce a novel method for Top-k Entity Augmentation, which is able to construct a top-k list of consistent integration results from a large corpus of heterogeneous data sources. It improves on the state-of-the-art by producing a set of individually consistent, but mutually diverse, set of alternative solutions, while minimizing the number of data sources used. Secondly, based on this novel augmentation method, we introduce the DrillBeyond system, which is able to process Open World SQL queries, i.e., queries referencing arbitrary attributes not defined in the queried database. The original database is then augmented at query time with Web data sources providing those attributes. Its hybrid augmentation/relational query processing enables the use of ad-hoc data search and integration in data analysis queries, and improves both performance and quality when compared to using separate systems for the two tasks. Finally, we studied the management of large-scale dataset corpora such as data lakes or Open Data platforms, which are used as data sources for our augmentation methods. We introduce Publish-time Data Integration as a new technique for data curation systems managing such corpora, which aims at improving the individual reusability of datasets without requiring up-front global integration. This is achieved by automatically generating metadata and format recommendations, allowing publishers to enhance their datasets with minimal effort. Collectively, these three contributions are the foundation of a Query-time Data Integration architecture, that enables ad-hoc data search and integration queries over large heterogeneous dataset collections

    Driving with Style: Inverse Reinforcement Learning in General-Purpose Planning for Automated Driving

    Full text link
    Behavior and motion planning play an important role in automated driving. Traditionally, behavior planners instruct local motion planners with predefined behaviors. Due to the high scene complexity in urban environments, unpredictable situations may occur in which behavior planners fail to match predefined behavior templates. Recently, general-purpose planners have been introduced, combining behavior and local motion planning. These general-purpose planners allow behavior-aware motion planning given a single reward function. However, two challenges arise: First, this function has to map a complex feature space into rewards. Second, the reward function has to be manually tuned by an expert. Manually tuning this reward function becomes a tedious task. In this paper, we propose an approach that relies on human driving demonstrations to automatically tune reward functions. This study offers important insights into the driving style optimization of general-purpose planners with maximum entropy inverse reinforcement learning. We evaluate our approach based on the expected value difference between learned and demonstrated policies. Furthermore, we compare the similarity of human driven trajectories with optimal policies of our planner under learned and expert-tuned reward functions. Our experiments show that we are able to learn reward functions exceeding the level of manual expert tuning without prior domain knowledge.Comment: Appeared at IROS 2019. Accepted version. Added/updated footnote, minor correction in preliminarie
    corecore