135 research outputs found

    Factorized second order methods in neural networks

    Full text link
    Les méthodes d'optimisation de premier ordre (descente de gradient) ont permis d'obtenir des succès impressionnants pour entrainer des réseaux de neurones artificiels. Les méthodes de second ordre permettent en théorie d'accélérer l'optimisation d'une fonction, mais dans le cas des réseaux de neurones le nombre de variables est bien trop important. Dans ce mémoire de maitrise, je présente les méthodes de second ordre habituellement appliquées en optimisation, ainsi que des méthodes approchées qui permettent de les appliquer aux réseaux de neurones profonds. J'introduis un nouvel algorithme basé sur une approximation des méthodes de second ordre, et je valide empiriquement qu'il présente un intérêt pratique. J'introduis aussi une modification de l'algorithme de rétropropagation du gradient, utilisé pour calculer efficacement les gradients nécessaires aux méthodes d'optimisation.First order optimization methods (gradient descent) have enabled impressive successes for training artificial neural networks. Second order methods theoretically allow accelerating optimization of functions, but in the case of neural networks the number of variables is far too big. In this master's thesis, I present usual second order methods, as well as approximate methods that allow applying them to deep neural networks. I introduce a new algorithm based on an approximation of second order methods, and I experimentally show that it is of practical interest. I also introduce a modification of the backpropagation algorithm, used to efficiently compute the gradients required in optimization

    Computing prime factorizations with neural networks

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2022When dealing with sufficiently large integers, even the most cutting-edge existing algorithms for computing prime factorizations are impractically slow. In this paper, we explore the possibility of using neural networks to approximate prime factorizations in the hopes of providing an alternative factorization method which trades accuracy for speed. Due to the intrinsic difficulty associated with this task, the focus of this paper is largely concentrated on the obstacles encountered in the training of the neural net, rather than on the viability of the method itself

    A Survey on Bayesian Deep Learning

    Full text link
    A comprehensive artificial intelligence system needs to not only perceive the environment with different `senses' (e.g., seeing and hearing) but also infer the world's conditional (or even causal) relations and corresponding uncertainty. The past decade has seen major advances in many perception tasks such as visual object recognition and speech recognition using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. In recent years, Bayesian deep learning has emerged as a unified probabilistic framework to tightly integrate deep learning and Bayesian models. In this general framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in turn, the feedback from the inference process is able to enhance the perception of text or images. This survey provides a comprehensive introduction to Bayesian deep learning and reviews its recent applications on recommender systems, topic models, control, etc. Besides, we also discuss the relationship and differences between Bayesian deep learning and other related topics such as Bayesian treatment of neural networks.Comment: To appear in ACM Computing Surveys (CSUR) 202

    Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates

    Get PDF
    The optimization of algorithm (hyper-)parameters is crucial for achieving peak performance across a wide range of domains, ranging from deep neural networks to solvers for hard combinatorial problems. The resulting algorithm configuration (AC) problem has attracted much attention from the machine learning community. However, the proper evaluation of new AC procedures is hindered by two key hurdles. First, AC benchmarks are hard to set up. Second and even more significantly, they are computationally expensive: a single run of an AC procedure involves many costly runs of the target algorithm whose performance is to be optimized in a given AC benchmark scenario. One common workaround is to optimize cheap-to-evaluate artificial benchmark functions (e.g., Branin) instead of actual algorithms; however, these have different properties than realistic AC problems. Here, we propose an alternative benchmarking approach that is similarly cheap to evaluate but much closer to the original AC problem: replacing expensive benchmarks by surrogate benchmarks constructed from AC benchmarks. These surrogate benchmarks approximate the response surface corresponding to true target algorithm performance using a regression model, and the original and surrogate benchmark share the same (hyper-)parameter space. In our experiments, we construct and evaluate surrogate benchmarks for hyperparameter optimization as well as for AC problems that involve performance optimization of solvers for hard combinatorial problems, drawing training data from the runs of existing AC procedures. We show that our surrogate benchmarks capture overall important characteristics of the AC scenarios, such as high- and low-performing regions, from which they were derived, while being much easier to use and orders of magnitude cheaper to evaluate

    Hyperparameter Optimization Across Problem Tasks

    Get PDF
    Hyperparameter Optimization is a task that is generally hard to accomplish as the correct setting of hyperparameters cannot be learned from the data directly. However, finding the right hyperparameters is necessary as the performance on test data can differ a lot under various hyperparameter settings. Many researchers rely on search techniques such as grid-search, having the downside that they require a lot of computation time, as prediction models are learned for a wide range of possible hyperparameter configurations which is only feasible in a parallel computing environment. Recently, search methods based on Bayesian optimization such as SMAC have been proposed and extended to include hyperparameter performance of the same model on another data set. These meta learning approaches show that the search for well-performing hyperparameters can be steered in a more intelligent manner. In this work, we aim to accomplish hyperparameter optimization across problem tasks where we specifically target regression and classification problems. We show, that the incorporation of hyperparameter performance on a classification task is helpful when optimizing hyperparameters for a regression task and vice versa

    Agnostic Bayes

    Get PDF
    Tableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015L’apprentissage automatique correspond à la science de l’apprentissage à partir d’exemples. Des algorithmes basés sur cette approche sont aujourd’hui omniprésents. Bien qu’il y ait eu un progrès significatif, ce domaine présente des défis importants. Par exemple, simplement sélectionner la fonction qui correspond le mieux aux données observées n’offre aucune garantie statistiques sur les exemples qui n’ont pas encore été observées. Quelques théories sur l’apprentissage automatique offrent des façons d’aborder ce problème. Parmi ceux-ci, nous présentons la modélisation bayésienne de l’apprentissage automatique et l’approche PACbayésienne pour l’apprentissage automatique dans une vue unifiée pour mettre en évidence d’importantes similarités. Le résultat de cette analyse suggère que de considérer les réponses de l’ensemble des modèles plutôt qu’un seul correspond à un des éléments-clés pour obtenir une bonne performance de généralisation. Malheureusement, cette approche vient avec un coût de calcul élevé, et trouver de bonnes approximations est un sujet de recherche actif. Dans cette thèse, nous présentons une approche novatrice qui peut être appliquée avec un faible coût de calcul sur un large éventail de configurations d’apprentissage automatique. Pour atteindre cet objectif, nous appliquons la théorie de Bayes d’une manière différente de ce qui est conventionnellement fait pour l’apprentissage automatique. Spécifiquement, au lieu de chercher le vrai modèle à l’origine des données observées, nous cherchons le meilleur modèle selon une métrique donnée. Même si cette différence semble subtile, dans cette approche, nous ne faisons pas la supposition que le vrai modèle appartient à l’ensemble de modèles explorés. Par conséquent, nous disons que nous sommes agnostiques. Plusieurs expérimentations montrent un gain de généralisation significatif en utilisant cette approche d’ensemble de modèles durant la phase de validation croisée. De plus, cet algorithme est simple à programmer et n’ajoute pas un coût de calcul significatif à la recherche d’hyperparamètres conventionnels. Finalement, cet outil probabiliste peut également être utilisé comme un test statistique pour évaluer la qualité des algorithmes sur plusieurs ensembles de données d’apprentissage.Machine learning is the science of learning from examples. Algorithms based on this approach are now ubiquitous. While there has been significant progress, this field presents important challenges. Namely, simply selecting the function that best fits the observed data was shown to have no statistical guarantee on the examples that have not yet been observed. There are a few learning theories that suggest how to address this problem. Among these, we present the Bayesian modeling of machine learning and the PAC-Bayesian approach to machine learning in a unified view to highlight important similarities. The outcome of this analysis suggests that model averaging is one of the key elements to obtain a good generalization performance. Specifically, one should perform predictions based on the outcome of every model instead of simply the one that best fits the observed data. Unfortunately, this approach comes with a high computational cost problem, and finding good approximations is the subject of active research. In this thesis, we present an innovative approach that can be applied with a low computational cost on a wide range of machine learning setups. In order to achieve this, we apply the Bayes’ theory in a different way than what is conventionally done for machine learning. Specifically, instead of searching for the true model at the origin of the observed data, we search for the best model according to a given metric. While the difference seems subtle, in this approach, we do not assume that the true model belongs to the set of explored model. Hence, we say that we are agnostic. An extensive experimental setup shows a significant generalization performance gain when using this model averaging approach during the cross-validation phase. Moreover, this simple algorithm does not add a significant computational cost to the conventional search of hyperparameters. Finally, this probabilistic tool can also be used as a statistical significance test to evaluate the quality of learning algorithms on multiple datasets
    • …
    corecore