174 research outputs found

    Design and optimization of joint iterative detection and decoding receiver for uplink polar coded SCMA system

    Get PDF
    SCMA and polar coding are possible candidates for 5G systems. In this paper, we firstly propose the joint iterative detection and decoding (JIDD) receiver for the uplink polar coded sparse code multiple access (PC-SCMA) system. Then, the EXIT chart is used to investigate the performance of the JIDD receiver. Additionally, we optimize the system design and polar code construction based on the EXIT chart analysis. The proposed receiver integrates the factor graph of SCMA detector and polar soft-output decoder into a joint factor graph, which enables the exchange of messages between SCMA detector and polar decoder iteratively. Simulation results demonstrate that the JIDD receiver has better BER performance and lower complexity than the separate scheme. Specifically, when polar code length N=256 and code rate R=1/2 , JIDD outperforms the separate scheme 4.8 and 6 dB over AWGN channel and Rayleigh fading channel, respectively. It also shows that, under 150% system loading, the JIDD receiver only has 0.3 dB performance loss compared to the single user uplink PC-SCMA over AWGN channel and 0.6 dB performance loss over Rayleigh fading channel

    Synchronization for capacity -approaching coded communication systems

    Get PDF
    The dissertation concentrates on synchronization of capacity approaching error-correction codes that are deployed in noisy channels with very low signal-to-noise ratio (SNR). The major topics are symbol timing synchronization and frame synchronization.;Capacity-approaching error-correction codes, like turbo codes and low-density parity-check (LDPC) codes, are capable of reaching very low bit error rates and frame error rates in noisy channels by iterative decoding. To fully achieve the potential decoding capability of Turbo codes and LDPC codes, proper symbol timing synchronization, frame synchronization and channel state estimation are required. The dissertation proposes a joint estimator of symbol time delay and channel SNR for symbol timing recovery, and a maximum a posteriori (MAP) frame synchronizer for frame synchronization.;Symbol timing recovery is implemented by sampling and interpolation. The received signal is sampled multiple times per symbol period with unknown delay and unknown SNR. A joint estimator estimates the time delay and the SNR. The signal is rebuilt by interpolating available samples using estimated time delay. The intermediate decoding results enable decision-feedback estimation. The estimates of time delay and SNR are refined by iterative processing. This refinement improves the system performance significantly.;Usually the sampling rate is assumed to be a strict integer multiple of the symbol rate. However, in a practical system the local oscillators in the transmitter and the receiver may have random drifts. Therefore the sampling rate is no longer an exact multiple of the symbol rate, and the sampling time follows a random walk. This random walk may harm the system performance severely. The dissertation analyzes the effect of random time walks and proposes to mitigate the effect by overlapped sliding windows and iterative processing.;Frame synchronization is required to find the correct boundaries of codewords. MAP frame synchronization in the sense of minimizing the frame sync failure rate is investigated. The MAP frame synchronizer explores low-density parity-check attributes of the capacity-approaching codes. The accuracy of frame synchronization is adequate for considered coded systems to work reliably under very low SNR

    Optimization of a Coded-Modulation System with Shaped Constellation

    Get PDF
    Conventional communication systems transmit signals that are selected from a signal constellation with uniform probability. However, information-theoretic results suggest that performance may be improved by shaping the constellation such that lower-energy signals are selected more frequently than higher-energy signals. This dissertation presents an energy efficient approach for shaping the constellations used by coded-modulation systems. The focus is on designing shaping techniques for systems that use a combination of amplitude phase shift keying (APSK) and low-density parity check (LDPC) coding. Such a combination is typical of modern satellite communications, such as the system used by the DVB-S2 standard.;The system implementation requires that a subset of the bits at the output of the LDPC encoder are passed through a nonlinear shaping encoder whose output bits are more likely to be a zero than a one. The constellation is partitioned into a plurality of sub-constellations, each with a different average signal energy, and the shaping bits are used to select the sub-constellation. An iterative receiver exchanges soft information among the demodulator, LDPC decoder, and shaping decoder. Parameters associated with the modulation and shaping code are optimized with respect to information rate, while the design of the LDPC code is optimized for the shaped modulation with the assistance of extrinsic-information transfer (EXIT) charts. The rule for labeling the constellation with bits is optimized using a novel hybrid cost function and a binary switching algorithm.;Simulation results show that the combination of constellation shaping, LDPC code optimization, and optimized bit labeling can achieve a gain in excess of 1 dB in an additive white Gaussian noise (AWGN) channel at a rate of 3 bits/symbol compared with a system that adheres directly to the DVB-S2 standard
    • …
    corecore