31 research outputs found

    On adaptive decision rules and decision parameter adaptation for automatic speech recognition

    Get PDF
    Recent advances in automatic speech recognition are accomplished by designing a plug-in maximum a posteriori decision rule such that the forms of the acoustic and language model distributions are specified and the parameters of the assumed distributions are estimated from a collection of speech and language training corpora. Maximum-likelihood point estimation is by far the most prevailing training method. However, due to the problems of unknown speech distributions, sparse training data, high spectral and temporal variabilities in speech, and possible mismatch between training and testing conditions, a dynamic training strategy is needed. To cope with the changing speakers and speaking conditions in real operational conditions for high-performance speech recognition, such paradigms incorporate a small amount of speaker and environment specific adaptation data into the training process. Bayesian adaptive learning is an optimal way to combine prior knowledge in an existing collection of general models with a new set of condition-specific adaptation data. In this paper, the mathematical framework for Bayesian adaptation of acoustic and language model parameters is first described. Maximum a posteriori point estimation is then developed for hidden Markov models and a number of useful parameters densities commonly used in automatic speech recognition and natural language processing.published_or_final_versio

    Autoregressive models for text independent speaker identification in noisy environments

    Get PDF
    The closed-set speaker identification problem is defined as the search within a set of persons for the speaker of a certain utterance. It is reported that the Gaussian mixture model (GMM) classifier achieves very high classification accuracies (in the range 95% - 100%) when both the training and testing utterances are recorded in sound proof studio, i.e., there is neither additive noise nor spectral distortion to the speech signals. However, in real life applications, speech is usually corrupted by noise and band-limitation. Moreover, there is a mismatch between the recording conditions of the training and testing environments. As a result, the classification accuracy of GMM-based systems deteriorates significantly. In this thesis, we propose a two-step procedure for improving the speaker identification performance under noisy environment. In the first step, we introduce a new classifier: vector autoregressive Gaussian mixture (VARGM) model. Unlike the GMM, the new classifier models correlations between successive feature vectors. We also integrate the proposed method into the framework of the universal background model (UBM). In addition, we develop the learning procedure according to the maximum likelihood (ML) criterion. Based on a thorough experimental evaluation, the proposed method achieves an improvement of 3 to 5% in the identification accuracy. In the second step, we propose a new compensation technique based on the generalized maximum likelihood (GML) decision rule. In particular, we assume a general form for the distribution of the noise-corrupted utterances, which contains two types of parameters: clean speech-related parameters and noise-related parameters. While the clean speech related parameters are estimated during the training phase, the noise related parameters are estimated from the corrupted speech in the testing phase. We applied the proposed method to utterances of 50 speakers selected from the TIMIT database, artificially corrupted by convolutive and additive noise. The signal to noise ratio (SNR) varies from 0 to 20 dB. Simulation results reveal that the proposed method achieves good robustness against variation in the SNR. For utterances corrupted by covolutive noise, the improvement in the classification accuracy ranges from 70% for SNR = 0 dB to around 4% for SNR = 10dB, compared to the standard ML decision rule. For utterances corrupted by additive noise, the improvement in the classification accuracy ranges from 1% to 10% for SNRs ranging from 0 to 20 dB. The proposed VARGM classifier is also applied to the speech emotion classification problem. In particular, we use the Berlin emotional speech database to validate the classification performance of the proposed VARGM classifier. The proposed technique provides a classification accuracy of 76% versus 71% for the hidden Markov model, 67% for the k-nearest neighbors, 55% for feed-forward neural networks. The model gives also better discrimination between high-arousal emotions (joy, anger, fear), low arousal emotions (sadness, boredom), and neutral emotions than the HMM. Another interesting application of the VARGM model is the blind equalization of multi input multiple output (MIMO) communication channels. Based on VARGM modeling of MIMO channels, we propose a four-step equalization procedure. First, the received data vectors are fitted into a VARGM model using the expectation maximization (EM) algorithm. The constructed VARGM model is then used to filter the received data. A Baysian decision rule is then applied to identify the transmitted symbols up to a permutation and phase ambiguities, which are finally resolved using a small training sequence. Moreover, we propose a fast and easily implementable model order selection technique. The new equalization algorithm is compared to the whitening method and found to provide less symbol error probability. The proposed technique is also applied to frequency-flat slow fading channels and found to provide a more accurate estimate of the channel response than that provided by the blind de-convolution exploiting channel encoding (BDCC) method and at a higher information rate

    Full Covariance Modelling for Speech Recognition

    Get PDF
    HMM-based systems for Automatic Speech Recognition typically model the acoustic features using mixtures of multivariate Gaussians. In this thesis, we consider the problem of learning a suitable covariance matrix for each Gaussian. A variety of schemes have been proposed for controlling the number of covariance parameters per Gaussian, and studies have shown that in general, the greater the number of parameters used in the models, the better the recognition performance. We therefore investigate systems with full covariance Gaussians. However, in this case, the obvious choice of parameters – given by the sample covariance matrix – leads to matrices that are poorly-conditioned, and do not generalise well to unseen test data. The problem is particularly acute when the amount of training data is limited. We propose two solutions to this problem: firstly, we impose the requirement that each matrix should take the form of a Gaussian graphical model, and introduce a method for learning the parameters and the model structure simultaneously. Secondly, we explain how an alternative estimator, the shrinkage estimator, is preferable to the standard maximum likelihood estimator, and derive formulae for the optimal shrinkage intensity within the context of a Gaussian mixture model. We show how this relates to the use of a diagonal covariance smoothing prior. We compare the effectiveness of these techniques to standard methods on a phone recognition task where the quantity of training data is artificially constrained. We then investigate the performance of the shrinkage estimator on a large-vocabulary conversational telephone speech recognition task. Discriminative training techniques can be used to compensate for the invalidity of the model correctness assumption underpinning maximum likelihood estimation. On the large-vocabulary task, we use discriminative training of the full covariance models and diagonal priors to yield improved recognition performance

    Modelling Speech Dynamics with Trajectory-HMMs

    Get PDF
    Institute for Communicating and Collaborative SystemsThe conditional independence assumption imposed by the hidden Markov models (HMMs) makes it difficult to model temporal correlation patterns in human speech. Traditionally, this limitation is circumvented by appending the first and second-order regression coefficients to the observation feature vectors. Although this leads to improved performance in recognition tasks, we argue that a straightforward use of dynamic features in HMMs will result in an inferior model, due to the incorrect handling of dynamic constraints. In this thesis I will show that an HMM can be transformed into a Trajectory-HMM capable of generating smoothed output mean trajectories, by performing a per-utterance normalisation. The resulting model can be trained by either maximisingmodel log-likelihood or minimisingmean generation errors on the training data. To combat the exponential growth of paths in searching, the idea of delayed path merging is proposed and a new time-synchronous decoding algorithm built on the concept of token-passing is designed for use in the recognition task. The Trajectory-HMM brings a new way of sharing knowledge between speech recognition and synthesis components, by tackling both problems in a coherent statistical framework. I evaluated the Trajectory-HMM on two different speech tasks using the speaker-dependent MOCHA-TIMIT database. First as a generative model to recover articulatory features from speech signal, where the Trajectory-HMM was used in a complementary way to the conventional HMM modelling techniques, within a joint Acoustic-Articulatory framework. Experiments indicate that the jointly trained acoustic-articulatory models are more accurate (having a lower Root Mean Square error) than the separately trained ones, and that Trajectory-HMM training results in greater accuracy compared with conventional Baum-Welch parameter updating. In addition, the Root Mean Square (RMS) training objective proves to be consistently better than the Maximum Likelihood objective. However, experiment of the phone recognition task shows that the MLE trained Trajectory-HMM, while retaining attractive properties of being a proper generative model, tends to favour over-smoothed trajectories among competing hypothesises, and does not perform better than a conventional HMM. We use this to build an argument that models giving a better fit on training data may suffer a reduction of discrimination by being too faithful to the training data. Finally, experiments on using triphone models show that increasing modelling detail is an effective way to leverage modelling performance with little added complexity in training

    Discriminative connectionist approaches for automatic speech recognition in cars

    Get PDF
    The first part of this thesis is devoted to the evaluation of approaches which exploit the inherent redundancy of the speech signal to improve the noise robustness. On the basis of this evaluation on the AURORA 2000 database, we further study in detail two of the evaluated approaches. The first of these approaches is the hybrid RBF/HMM approach, which is an attempt to combine the superior classification performance of radial basis functions (RBFs) with the ability of HMMs to model time variation. The second approach is using neural networks to non-linearly reduce the dimensionality of large feature vectors including context frames. We propose the use of different MLP topologies for that purpose. Experiments on the AURORA 2000 database reveal that the performance of the first approach is similar to the performance of systems based on SCHMMs. The second approach cannot outperform the performance of linear discriminant analysis (LDA) on a database recorded in real car environments, but it is on average significantly better than LDA on the AURORA 2000 database.Im ersten Teil dieser Arbeit werden bestehende Verfahren zur Erhöhung der Robustheit von Spracherkennungssystemen in lauten Umgebungen evaluiert, die auf der Ausnutzung der Redundanz im Sprachsignal basieren. Auf der Grundlage dieser Evaluation auf der AURORA 2000 Datenbank werden zwei spezielle AnsĂ€tze weiter ausgearbeitet und detalliert analysiert. Der erste dieser AnsĂ€tze verbindet die herausragende Klassifikationsleistung von neuronalen Netzen mit radialen Basisfunktionen (RBF) mit der FĂ€higkeit von Hidden-Markov-Modellen (HMM), ZeitverĂ€nderlichkeiten zu modellieren. In einem zweiten Ansatz werden NN zur nichtlinearen Dimensionsreduktion hochdimensionaler Kontextvektoren in unterschiedlichen Netzwerk-Topologien untersucht. In Experimenten konnte gezeigt werden, dass der erste dieser AnsĂ€tze fĂŒr die AURORA-Datenbank eine Ă€hnliche LeistungsfĂ€higkeit wie semikontinuierliche HMM (SCHMM) aufweist. Der zweite Ansatz erzielt auf einer im Kraftfahrzeug aufgenommenen Datenbank keine Verbesserung gegenĂŒber den klassischen linearen AnsĂ€tzen zu Dimensionsreduktion (LDA), erweist sich aber auf der AURORA-Datenbank als signifikan
    corecore