13,256 research outputs found

    Learning Joint Semantic Parsers from Disjoint Data

    Full text link
    We present a new approach to learning semantic parsers from multiple datasets, even when the target semantic formalisms are drastically different, and the underlying corpora do not overlap. We handle such "disjoint" data by treating annotations for unobserved formalisms as latent structured variables. Building on state-of-the-art baselines, we show improvements both in frame-semantic parsing and semantic dependency parsing by modeling them jointly.Comment: NAACL 201

    Deep Semantic Role Labeling with Self-Attention

    Full text link
    Semantic Role Labeling (SRL) is believed to be a crucial step towards natural language understanding and has been widely studied. Recent years, end-to-end SRL with recurrent neural networks (RNN) has gained increasing attention. However, it remains a major challenge for RNNs to handle structural information and long range dependencies. In this paper, we present a simple and effective architecture for SRL which aims to address these problems. Our model is based on self-attention which can directly capture the relationships between two tokens regardless of their distance. Our single model achieves F1=83.4_1=83.4 on the CoNLL-2005 shared task dataset and F1=82.7_1=82.7 on the CoNLL-2012 shared task dataset, which outperforms the previous state-of-the-art results by 1.81.8 and 1.01.0 F1_1 score respectively. Besides, our model is computationally efficient, and the parsing speed is 50K tokens per second on a single Titan X GPU.Comment: Accepted by AAAI-201

    Frame-Semantic Parsing with Softmax-Margin Segmental RNNs and a Syntactic Scaffold

    Full text link
    We present a new, efficient frame-semantic parser that labels semantic arguments to FrameNet predicates. Built using an extension to the segmental RNN that emphasizes recall, our basic system achieves competitive performance without any calls to a syntactic parser. We then introduce a method that uses phrase-syntactic annotations from the Penn Treebank during training only, through a multitask objective; no parsing is required at training or test time. This "syntactic scaffold" offers a cheaper alternative to traditional syntactic pipelining, and achieves state-of-the-art performance

    Transferring Semantic Roles Using Translation and Syntactic Information

    Full text link
    Our paper addresses the problem of annotation projection for semantic role labeling for resource-poor languages using supervised annotations from a resource-rich language through parallel data. We propose a transfer method that employs information from source and target syntactic dependencies as well as word alignment density to improve the quality of an iterative bootstrapping method. Our experiments yield a 3.53.5 absolute labeled F-score improvement over a standard annotation projection method

    Multi-task Learning for Japanese Predicate Argument Structure Analysis

    Full text link
    An event-noun is a noun that has an argument structure similar to a predicate. Recent works, including those considered state-of-the-art, ignore event-nouns or build a single model for solving both Japanese predicate argument structure analysis (PASA) and event-noun argument structure analysis (ENASA). However, because there are interactions between predicates and event-nouns, it is not sufficient to target only predicates. To address this problem, we present a multi-task learning method for PASA and ENASA. Our multi-task models improved the performance of both tasks compared to a single-task model by sharing knowledge from each task. Moreover, in PASA, our models achieved state-of-the-art results in overall F1 scores on the NAIST Text Corpus. In addition, this is the first work to employ neural networks in ENASA.Comment: 10 pages; NAACL 201

    Linguistically-Informed Self-Attention for Semantic Role Labeling

    Full text link
    Current state-of-the-art semantic role labeling (SRL) uses a deep neural network with no explicit linguistic features. However, prior work has shown that gold syntax trees can dramatically improve SRL decoding, suggesting the possibility of increased accuracy from explicit modeling of syntax. In this work, we present linguistically-informed self-attention (LISA): a neural network model that combines multi-head self-attention with multi-task learning across dependency parsing, part-of-speech tagging, predicate detection and SRL. Unlike previous models which require significant pre-processing to prepare linguistic features, LISA can incorporate syntax using merely raw tokens as input, encoding the sequence only once to simultaneously perform parsing, predicate detection and role labeling for all predicates. Syntax is incorporated by training one attention head to attend to syntactic parents for each token. Moreover, if a high-quality syntactic parse is already available, it can be beneficially injected at test time without re-training our SRL model. In experiments on CoNLL-2005 SRL, LISA achieves new state-of-the-art performance for a model using predicted predicates and standard word embeddings, attaining 2.5 F1 absolute higher than the previous state-of-the-art on newswire and more than 3.5 F1 on out-of-domain data, nearly 10% reduction in error. On ConLL-2012 English SRL we also show an improvement of more than 2.5 F1. LISA also out-performs the state-of-the-art with contextually-encoded (ELMo) word representations, by nearly 1.0 F1 on news and more than 2.0 F1 on out-of-domain text.Comment: In Conference on Empirical Methods in Natural Language Processing (EMNLP). Brussels, Belgium. October 201

    Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs

    Full text link
    We present a transition-based parser that jointly produces syntactic and semantic dependencies. It learns a representation of the entire algorithm state, using stack long short-term memories. Our greedy inference algorithm has linear time, including feature extraction. On the CoNLL 2008--9 English shared tasks, we obtain the best published parsing performance among models that jointly learn syntax and semantics.Comment: Proceedings of CoNLL 2016; 13 pages, 5 figure

    Keypoint Based Weakly Supervised Human Parsing

    Full text link
    Fully convolutional networks (FCN) have achieved great success in human parsing in recent years. In conventional human parsing tasks, pixel-level labeling is required for guiding the training, which usually involves enormous human labeling efforts. To ease the labeling efforts, we propose a novel weakly supervised human parsing method which only requires simple object keypoint annotations for learning. We develop an iterative learning method to generate pseudo part segmentation masks from keypoint labels. With these pseudo masks, we train an FCN network to output pixel-level human parsing predictions. Furthermore, we develop a correlation network to perform joint prediction of part and object segmentation masks and improve the segmentation performance. The experiment results show that our weakly supervised method is able to achieve very competitive human parsing results. Despite our method only uses simple keypoint annotations for learning, we are able to achieve comparable performance with fully supervised methods which use the expensive pixel-level annotations

    Improving Implicit Semantic Role Labeling by Predicting Semantic Frame Arguments

    Full text link
    Implicit semantic role labeling (iSRL) is the task of predicting the semantic roles of a predicate that do not appear as explicit arguments, but rather regard common sense knowledge or are mentioned earlier in the discourse. We introduce an approach to iSRL based on a predictive recurrent neural semantic frame model (PRNSFM) that uses a large unannotated corpus to learn the probability of a sequence of semantic arguments given a predicate. We leverage the sequence probabilities predicted by the PRNSFM to estimate selectional preferences for predicates and their arguments. On the NomBank iSRL test set, our approach improves state-of-the-art performance on implicit semantic role labeling with less reliance than prior work on manually constructed language resources.Comment: IJCNLP 201

    A Span Selection Model for Semantic Role Labeling

    Full text link
    We present a simple and accurate span-based model for semantic role labeling (SRL). Our model directly takes into account all possible argument spans and scores them for each label. At decoding time, we greedily select higher scoring labeled spans. One advantage of our model is to allow us to design and use span-level features, that are difficult to use in token-based BIO tagging approaches. Experimental results demonstrate that our ensemble model achieves the state-of-the-art results, 87.4 F1 and 87.0 F1 on the CoNLL-2005 and 2012 datasets, respectively.Comment: Accepted by EMNLP 201
    • …
    corecore