6,277 research outputs found

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Self-Tuned Deep Super Resolution

    Full text link
    Deep learning has been successfully applied to image super resolution (SR). In this paper, we propose a deep joint super resolution (DJSR) model to exploit both external and self similarities for SR. A Stacked Denoising Convolutional Auto Encoder (SDCAE) is first pre-trained on external examples with proper data augmentations. It is then fine-tuned with multi-scale self examples from each input, where the reliability of self examples is explicitly taken into account. We also enhance the model performance by sub-model training and selection. The DJSR model is extensively evaluated and compared with state-of-the-arts, and show noticeable performance improvements both quantitatively and perceptually on a wide range of images

    Bayesian orthogonal component analysis for sparse representation

    Get PDF
    This paper addresses the problem of identifying a lower dimensional space where observed data can be sparsely represented. This under-complete dictionary learning task can be formulated as a blind separation problem of sparse sources linearly mixed with an unknown orthogonal mixing matrix. This issue is formulated in a Bayesian framework. First, the unknown sparse sources are modeled as Bernoulli-Gaussian processes. To promote sparsity, a weighted mixture of an atom at zero and a Gaussian distribution is proposed as prior distribution for the unobserved sources. A non-informative prior distribution defined on an appropriate Stiefel manifold is elected for the mixing matrix. The Bayesian inference on the unknown parameters is conducted using a Markov chain Monte Carlo (MCMC) method. A partially collapsed Gibbs sampler is designed to generate samples asymptotically distributed according to the joint posterior distribution of the unknown model parameters and hyperparameters. These samples are then used to approximate the joint maximum a posteriori estimator of the sources and mixing matrix. Simulations conducted on synthetic data are reported to illustrate the performance of the method for recovering sparse representations. An application to sparse coding on under-complete dictionary is finally investigated.Comment: Revised version. Accepted to IEEE Trans. Signal Processin
    • 

    corecore