1,792 research outputs found

    Joint Hybrid Backhaul and Access Links Design in Cloud-Radio Access Networks

    Full text link
    The cloud-radio access network (CRAN) is expected to be the core network architecture for next generation mobile radio systems. In this paper, we consider the downlink of a CRAN formed of one central processor (the cloud) and several base-station (BS), where each BS is connected to the cloud via either a wireless or capacity-limited wireline backhaul link. The paper addresses the joint design of the hybrid backhaul links (i.e., designing the wireline and wireless backhaul connections from the cloud to the BSs) and the access links (i.e., determining the sparse beamforming solution from the BSs to the users). The paper formulates the hybrid backhaul and access link design problem by minimizing the total network power consumption. The paper solves the problem using a two-stage heuristic algorithm. At one stage, the sparse beamforming solution is found using a weighted mixed `1=`2 norm minimization approach; the correlation matrix of the quantization noise of the wireline backhaul links is computed using the classical rate-distortion theory. At the second stage, the transmit powers of the wireless backhaul links are found by solving a power minimization problem subject to quality-of-service constraints, based on the principle of conservation of rate by utilizing the rates found in the first stage. Simulation results suggest that the performance of the proposed algorithm approaches the global optimum solution, especially at high signal-to-interference-plus-noise ratio (SINR).Comment: 6 pages, 3 figures, IWCPM 201

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author

    Hybrid Scheduling/Signal-Level Coordination in the Downlink of Multi-Cloud Radio-Access Networks

    Full text link
    In the context of resource allocation in cloud-radio access networks, recent studies assume either signal-level or scheduling-level coordination. This paper, instead, considers a hybrid level of coordination for the scheduling problem in the downlink of a multi-cloud radio-access network, as a means to benefit from both scheduling policies. Consider a multi-cloud radio access network, where each cloud is connected to several base-stations (BSs) via high capacity links, and therefore allows joint signal processing between them. Across the multiple clouds, however, only scheduling-level coordination is permitted, as it requires a lower level of backhaul communication. The frame structure of every BS is composed of various time/frequency blocks, called power-zones (PZs), and kept at fixed power level. The paper addresses the problem of maximizing a network-wide utility by associating users to clouds and scheduling them to the PZs, under the practical constraints that each user is scheduled, at most, to a single cloud, but possibly to many BSs within the cloud, and can be served by one or more distinct PZs within the BSs' frame. The paper solves the problem using graph theory techniques by constructing the conflict graph. The scheduling problem is, then, shown to be equivalent to a maximum-weight independent set problem in the constructed graph, in which each vertex symbolizes an association of cloud, user, BS and PZ, with a weight representing the utility of that association. Simulation results suggest that the proposed hybrid scheduling strategy provides appreciable gain as compared to the scheduling-level coordinated networks, with a negligible degradation to signal-level coordination
    • …
    corecore