131 research outputs found

    Joint filtering of SAR amplitude and interferometric phase with graph-cuts

    Get PDF
    Like other coherent imaging modalities, synthetic aperture radar (SAR) images suffer from speckle noise. The presence of this noise makes the automatic interpretation of images a challenging task and noise reduction is often a prerequisite for successful use of classical image processing algorithms. values respectively less (sub-figure 1, under-regularized), equal (sub-figure 2) or greater (sub figure 3, over-regularized) than βopt. Section IV-B presents some results of the joint regularization of high-resolution interferometric SAR images on two datasets: a 1200 × 1200 pixels region of interest from Toulouse city, France (figure 5), and a 1024 × 682 pixels region of interest from Saint-Paul sur Mer, France (figure 7). From the regularized images shown, it can be noticed that the noise has been efficiently reduced both in amplitude and phase images. The sharp transitions in the phase image that correspond to man-made structures are well preserved. Joint regularization gives more precise contours than independent regularization as they are co-located from the phase and amplitude images. Small objects also tend to be better preserved by joint-regularization as illustrated in figure 6 which shows an excerpt of a portion of streets with several aligned streetlights visible as brighter dots (higher reflectivity as well as higher altitude). values respectively less (sub-figure 1, under-regularized), equal (sub-figure 2) or greater (sub figure 3, over-regularized) than βopt. Section IV-B presents some results of the joint regularization of high-resolution interferometric SAR images on two datasets: a 1200 × 1200 pixels region of interest from Toulouse city, France (figure 5), and a 1024 × 682 pixels region of interest from Saint-Paul sur Mer, France (figure 7). From the regularized images shown, it can be noticed that the noise has been efficiently reduced both in amplitude and phase images. The sharp transitions in the phase image that correspond to man-made structures are well preserved. Joint regularization gives more precise contours than independent regularization as they are co-located from the phase and amplitude images. Small objects also tend to be better preserved by joint-regularization as illustrated in figure 6 which shows an excerpt of a portion of streets with several aligned streetlights visible as brighter dots (higher reflectivity as well as higher altitude).L’imagerie radar à ouverture synthétique (SAR), comme d’autres modalités d’imagerie cohérente, souffre de la présence du chatoiement (speckle). Cette perturbation rend difficile l’interprétation automatique des images et le filtrage est souvent une étape nécessaire à l’utilisation d’algorithmes de traitement d’images classiques. De nombreuses approches ont été proposées pour filtrer les images corrompues par un bruit de chatoiement. La modélisation par champs de Markov (CdM) fournit un cadre adapté pour exprimer à la fois les contraintes sur l’attache aux données et les propriétés désirées sur l’image filtrée. Dans ce contexte la minimisation de la variation totale a été abondamment utilisée afin de limiter les oscillations dans l’image régularisée tout en préservant les bords. Le bruit de chatoiement suit une distribution de probabilité à queue lourde et la formulation par CdM conduit à un problème de minimisation mettant en jeu des attaches aux données non-convexes. Une telle minimisation peut être obtenue par une approche d’optimisation combinatoire en calculant des coupures minimales de graphes. Bien que cette optimisation puisse être menée en théorie, ce type d’approche ne peut être appliqué en pratique sur les images de grande taille rencontrées dans les applications de télédétection à cause de leur grande consommation de mémoire. Le temps de calcul des algorithmes de minimisation approchée (en particulier α-extension) est généralement trop élevé quand la régularisation jointe de plusieurs images est considérée. Nous montrons qu’une solution satisfaisante peut être obtenue, en quelques itérations, en menant une exploration de l’espace de recherche avec de grands pas. Cette dernière est réalisée en utilisant des techniques de coupures minimales. Cet algorithme est appliqué pour régulariser de manière jointe à la fois l’amplitude et la phase interférométrique d’images SAR en milieu urbain

    Approches tomographiques structurelles pour l'analyse du milieu urbain par tomographie SAR THR : TomoSAR

    No full text
    SAR tomography consists in exploiting multiple images from the same area acquired from a slightly different angle to retrieve the 3-D distribution of the complex reflectivity on the ground. As the transmitted waves are coherent, the desired spatial information (along with the vertical axis) is coded in the phase of the pixels. Many methods have been proposed to retrieve this information in the past years. However, the natural redundancies of the scene are generally not exploited to improve the tomographic estimation step. This Ph.D. presents new approaches to regularize the estimated reflectivity density obtained through SAR tomography by exploiting the urban geometrical structures.La tomographie SAR exploite plusieurs acquisitions d'une même zone acquises d'un point de vue légerement différent pour reconstruire la densité complexe de réflectivité au sol. Cette technique d'imagerie s'appuyant sur l'émission et la réception d'ondes électromagnétiques cohérentes, les données analysées sont complexes et l'information spatiale manquante (selon la verticale) est codée dans la phase. De nombreuse méthodes ont pu être proposées pour retrouver cette information. L'utilisation des redondances naturelles à certains milieux n'est toutefois généralement pas exploitée pour améliorer l'estimation tomographique. Cette thèse propose d'utiliser l'information structurelle propre aux structures urbaines pour régulariser les densités de réflecteurs obtenues par cette technique

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS

    Deep Image Prior Amplitude SAR Image Anonymization

    Get PDF
    This paper presents an extensive evaluation of the Deep Image Prior (DIP) technique for image inpainting on Synthetic Aperture Radar (SAR) images. SAR images are gaining popularity in various applications, but there may be a need to conceal certain regions of them. Image inpainting provides a solution for this. However, not all inpainting techniques are designed to work on SAR images. Some are intended for use on photographs, while others have to be specifically trained on top of a huge set of images. In this work, we evaluate the performance of the DIP technique that is capable of addressing these challenges: it can adapt to the image under analysis including SAR imagery; it does not require any training. Our results demonstrate that the DIP method achieves great performance in terms of objective and semantic metrics. This indicates that the DIP method is a promising approach for inpainting SAR images, and can provide high-quality results that meet the requirements of various applications

    InSAR Deformation Analysis with Distributed Scatterers: A Review Complemented by New Advances

    Get PDF
    Interferometric Synthetic Aperture Radar (InSAR) is a powerful remote sensing technique able to measure deformation of the earth’s surface over large areas. InSAR deformation analysis uses two main categories of backscatter: Persistent Scatterers (PS) and Distributed Scatterers (DS). While PS are characterized by a high signal-to-noise ratio and predominantly occur as single pixels, DS possess a medium or low signal-to-noise ratio and can only be exploited if they form homogeneous groups of pixels that are large enough to allow for statistical analysis. Although DS have been used by InSAR since its beginnings for different purposes, new methods developed during the last decade have advanced the field significantly. Preprocessing of DS with spatio-temporal filtering allows today the use of DS in PS algorithms as if they were PS, thereby enlarging spatial coverage and stabilizing algorithms. This review explores the relations between different lines of research and discusses open questions regarding DS preprocessing for deformation analysis. The review is complemented with an experiment that demonstrates that significantly improved results can be achieved for preprocessed DS during parameter estimation if their statistical properties are used

    Radar Interferometry for Monitoring Crustal Deformation. Geodetic Applications in Greece

    Get PDF
    The chapatti and breadmaking quality of nine (eight Indian and one Australian) wheat (Triticum aestivum L.) cultivars was compared. The extension of a chapatti strip measured with a Kieffer dough extensibility rig correlated with chapatti scores for overall quality (r = 0.84), pliability (r = 0.91), hand feel (r = 0.72), chapatti eating quality (r = 0.68), and taste (r = 0.80). Overall chapatti quality also correlated with the resistance to extension of a chapatti strip (r = 0.68) when tested for uniaxial extension with a texture analyzer. The texture analyzer provided objectivity in the scoring of chapatti quality. The high-molecular-weight glutenin subunit protein composition assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis did not correlate with the overall chapatti score. A negative correlation was found between chapatti and bread scores (r = 0.77). The different requirements for chapatti and bread quality complicate the breeding of new wheat varieties and the exchange of germplasm between regions producing wheat for chapatti and those supplying bread producers

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version
    corecore