2,627 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Automated Distinct Bone Segmentation from Computed Tomography Images using Deep Learning

    Get PDF
    Large-scale CT scans are frequently performed for forensic and diagnostic purposes, to plan and direct surgical procedures, and to track the development of bone-related diseases. This often involves radiologists who have to annotate bones manually or in a semi-automatic way, which is a time consuming task. Their annotation workload can be reduced by automated segmentation and detection of individual bones. This automation of distinct bone segmentation not only has the potential to accelerate current workflows but also opens up new possibilities for processing and presenting medical data for planning, navigation, and education. In this thesis, we explored the use of deep learning for automating the segmentation of all individual bones within an upper-body CT scan. To do so, we had to find a network architec- ture that provides a good trade-off between the problem’s high computational demands and the results’ accuracy. After finding a baseline method and having enlarged the dataset, we set out to eliminate the most prevalent types of error. To do so, we introduced an novel method called binary-prediction-enhanced multi-class (BEM) inference, separating the task into two: Distin- guishing bone from non-bone is conducted separately from identifying the individual bones. Both predictions are then merged, which leads to superior results. Another type of error is tack- led by our developed architecture, the Sneaky-Net, which receives additional inputs with larger fields of view but at a smaller resolution. We can thus sneak more extensive areas of the input into the network while keeping the growth of additional pixels in check. Overall, we present a deep-learning-based method that reliably segments most of the over one hundred distinct bones present in upper-body CT scans in an end-to-end trained matter quickly enough to be used in interactive software. Our algorithm has been included in our groups virtual reality medical image visualisation software SpectoVR with the plan to be used as one of the puzzle piece in surgical planning and navigation, as well as in the education of future doctors

    Improving Prediction Performance and Model Interpretability through Attention Mechanisms from Basic and Applied Research Perspectives

    Get PDF
    With the dramatic advances in deep learning technology, machine learning research is focusing on improving the interpretability of model predictions as well as prediction performance in both basic and applied research. While deep learning models have much higher prediction performance than conventional machine learning models, the specific prediction process is still difficult to interpret and/or explain. This is known as the black-boxing of machine learning models and is recognized as a particularly important problem in a wide range of research fields, including manufacturing, commerce, robotics, and other industries where the use of such technology has become commonplace, as well as the medical field, where mistakes are not tolerated.Focusing on natural language processing tasks, we consider interpretability as the presentation of the contribution of a prediction to an input word in a recurrent neural network. In interpreting predictions from deep learning models, much work has been done mainly on visualization of importance mainly based on attention weights and gradients for the inference results. However, it has become clear in recent years that there are not negligible problems with these mechanisms of attention mechanisms and gradients-based techniques. The first is that the attention weight learns which parts to focus on, but depending on the task or problem setting, the relationship with the importance of the gradient may be strong or weak, and these may not always be strongly related. Furthermore, it is often unclear how to integrate both interpretations. From another perspective, there are several unclear aspects regarding the appropriate application of the effects of attention mechanisms to real-world problems with large datasets, as well as the properties and characteristics of the applied effects. This dissertation discusses both basic and applied research on how attention mechanisms improve the performance and interpretability of machine learning models.From the basic research perspective, we proposed a new learning method that focuses on the vulnerability of the attention mechanism to perturbations, which contributes significantly to prediction performance and interpretability. Deep learning models are known to respond to small perturbations that humans cannot perceive and may exhibit unintended behaviors and predictions. Attention mechanisms used to interpret predictions are no exception. This is a very serious problem because current deep learning models rely heavily on this mechanism. We focused on training techniques using adversarial perturbations, i.e., perturbations that dares to deceive the attention mechanism. We demonstrated that such an adversarial training technique makes the perturbation-sensitive attention mechanism robust and enables the presentation of highly interpretable predictive evidence. By further extending the proposed technique to semi-supervised learning, a general-purpose learning model with a more robust and interpretable attention mechanism was achieved.From the applied research perspective, we investigated the effectiveness of the deep learning models with attention mechanisms validated in the basic research, are in real-world applications. Since deep learning models with attention mechanisms have mainly been evaluated using basic tasks in natural language processing and computer vision, their performance when used as core components of applications and services has often been unclear. We confirm the effectiveness of the proposed framework with an attention mechanism by focusing on the real world of applications, particularly in the field of computational advertising, where the amount of data is large, and the interpretation of predictions is necessary. The proposed frameworks are new attempts to support operations by predicting the nature of digital advertisements with high serving effectiveness, and their effectiveness has been confirmed using large-scale ad-serving data.In light of the above, the research summarized in this dissertation focuses on the attention mechanism, which has been the focus of much attention in recent years, and discusses its potential for both basic research in terms of improving prediction performance and interpretability, and applied research in terms of evaluating it for real-world applications using large data sets beyond the laboratory environment. The dissertation also concludes with a summary of the implications of these findings for subsequent research and future prospects in the field.博士(工学)法政大学 (Hosei University

    Pure Message Passing Can Estimate Common Neighbor for Link Prediction

    Full text link
    Message Passing Neural Networks (MPNNs) have emerged as the {\em de facto} standard in graph representation learning. However, when it comes to link prediction, they often struggle, surpassed by simple heuristics such as Common Neighbor (CN). This discrepancy stems from a fundamental limitation: while MPNNs excel in node-level representation, they stumble with encoding the joint structural features essential to link prediction, like CN. To bridge this gap, we posit that, by harnessing the orthogonality of input vectors, pure message-passing can indeed capture joint structural features. Specifically, we study the proficiency of MPNNs in approximating CN heuristics. Based on our findings, we introduce the Message Passing Link Predictor (MPLP), a novel link prediction model. MPLP taps into quasi-orthogonal vectors to estimate link-level structural features, all while preserving the node-level complexities. Moreover, our approach demonstrates that leveraging message-passing to capture structural features could offset MPNNs' expressiveness limitations at the expense of estimation variance. We conduct experiments on benchmark datasets from various domains, where our method consistently outperforms the baseline methods.Comment: preprin

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Predicate Matrix: an interoperable lexical knowledge base for predicates

    Get PDF
    183 p.La Matriz de Predicados (Predicate Matrix en inglés) es un nuevo recurso léxico-semántico resultado de la integración de múltiples fuentes de conocimiento, entre las cuales se encuentran FrameNet, VerbNet, PropBank y WordNet. La Matriz de Predicados proporciona un léxico extenso y robusto que permite mejorar la interoperabilidad entre los recursos semánticos mencionados anteriormente. La creación de la Matriz de Predicados se basa en la integración de Semlink y nuevos mappings obtenidos utilizando métodos automáticos que enlazan el conocimiento semántico a nivel léxico y de roles. Asimismo, hemos ampliado la Predicate Matrix para cubrir los predicados nominales (inglés, español) y predicados en otros idiomas (castellano, catalán y vasco). Como resultado, la Matriz de predicados proporciona un léxico multilingüe que permite el análisis semántico interoperable en múltiples idiomas

    Modern meat: the next generation of meat from cells

    Get PDF
    Modern Meat is the first textbook on cultivated meat, with contributions from over 100 experts within the cultivated meat community. The Sections of Modern Meat comprise 5 broad categories of cultivated meat: Context, Impact, Science, Society, and World. The 19 chapters of Modern Meat, spread across these 5 sections, provide detailed entries on cultivated meat. They extensively tour a range of topics including the impact of cultivated meat on humans and animals, the bioprocess of cultivated meat production, how cultivated meat may become a food option in Space and on Mars, and how cultivated meat may impact the economy, culture, and tradition of Asia
    corecore