12 research outputs found

    Adaptive Estimation and Heuristic Optimization of Nonlinear Spacecraft Attitude Dynamics

    Get PDF
    For spacecraft conducting on-orbit operations, changes to the structure of the spacecraft are not uncommon. These planned or unanticipated changes in inertia properties couple with the spacecraft\u27s attitude dynamics and typically require estimation. For systems with time-varying inertia parameters, multiple model adaptive estimation (MMAE) routines can be utilized for parameter and state estimates. MMAE algorithms involve constructing a bank of recursive estimators, each assuming a different hypothesis for the systems dynamics. This research has three distinct, but related, contributions to satellite attitude dynamics and estimation. In the first part of this research, MMAE routines employing parallel banks of unscented attitude filters are applied to analytical models of spacecraft with time-varying mass moments of inertia (MOI), with the objective of estimating the MOI and classifying the spacecraft\u27s behavior. New adaptive estimation techniques were either modified or developed that can detect discontinuities in MOI up to 98 of the time in the specific problem scenario.Second, heuristic optimization techniques and numerical methods are applied to Wahba\u27s single-frame attitude estimation problem,decreasing computation time by an average of nearly 67 . Finally, this research poses MOI estimation as an ODE parameter identification problem, achieving successful numerical estimates through shooting methods and exploiting the polhodes of rigid body motion with results, on average, to be within 1 to 5 of the true MOI values

    Support Vector Regression-Based Adaptive Divided Difference Filter for Nonlinear State Estimation Problems

    Get PDF
    We present a support vector regression-based adaptive divided difference filter (SVRADDF) algorithm for improving the low state estimation accuracy of nonlinear systems, which are typically affected by large initial estimation errors and imprecise prior knowledge of process and measurement noises. The derivative-free SVRADDF algorithm is significantly simpler to compute than other methods and is implemented using only functional evaluations. The SVRADDF algorithm involves the use of the theoretical and actual covariance of the innovation sequence. Support vector regression (SVR) is employed to generate the adaptive factor to tune the noise covariance at each sampling instant when the measurement update step executes, which improves the algorithm’s robustness. The performance of the proposed algorithm is evaluated by estimating states for (i) an underwater nonmaneuvering target bearing-only tracking system and (ii) maneuvering target bearing-only tracking in an air-traffic control system. The simulation results show that the proposed SVRADDF algorithm exhibits better performance when compared with a traditional DDF algorithm

    State dependent multiple model-based particle filtering for ballistic missile tracking in a low-observable environment

    Get PDF
    This paper proposes a new method for tracking the whole trajectory of a ballistic missile (BM), in a low-observable environment with ‘imperfect’ sensor measurement incorporating both miss detection and false alarms. A hybrid system with state dependent transition probabilities is proposed where multiple state models represent the ballistic missile movement during different phases; and domain knowledge is exploited to model the transition probabilities between different flight phases in a state-dependent way. The random finite set (RFS) is adopted to model radar sensor measurements which include both miss detection and false alarms. Based on the proposed hybrid modeling system and the RFS represented sensor measurements, a state dependent interacting multiple model particle filtering method integrated with a generalized measurement likelihood function is developed for the BM tracking. Comprehensive simulation studies show that the proposed method outperforms the traditional ones for the BM tracking, with more accurate estimations of flight mode probabilities, positions and velocities

    Continuous low thrust for small spacecraft proximity operations

    Get PDF
    Recently, both DoD and NASA have demonstrated increased interest in the development of close proximity operations for space systems. AFRL\u27s Advanced Sciences and Technology Research Institute for Astrodynamics (ASTRIA) has defined several key research topics relevant to military priorities, with one area of critical importance being the inspection and observation of low Earth orbit resident space objects (RSOs). This study investigates the feasibility of using a low-thrust cold-gas propulsion system to effectively and accurately facilitate resident space object inspection. Specifically, this study focuses on the Missouri S&T Satellite mission (M-SAT) as a means to demonstrate autonomous RSO inspection. This paper describes the mission requirements and outlines a mission plan for spacecraft separation, formation stabilization, and RSO circumnavigation over a 1.5 orbital period time frame. Autonomous guidance path design and comparisons of multiple feedback control systems are developed as a preliminary investigation in support of the M-SAT mission. The effects of data corruption with measurement and process noise on the mission success criteria are also investigated to determine the performance requirements of the onboard state sensors. The results presented provide a basis for simulating the M-SAT mission from separation to extended mission operations. Velocity change and fuel consumption rates are provided for future mission design and requirement verification --Abstract, page iii

    New Algorithms for Uncertainty Quantification and Nonlinear Estimation of Stochastic Dynamical Systems

    Get PDF
    Recently there has been growing interest to characterize and reduce uncertainty in stochastic dynamical systems. This drive arises out of need to manage uncertainty in complex, high dimensional physical systems. Traditional techniques of uncertainty quantification (UQ) use local linearization of dynamics and assumes Gaussian probability evolution. But several difficulties arise when these UQ models are applied to real world problems, which, generally are nonlinear in nature. Hence, to improve performance, robust algorithms, which can work efficiently in a nonlinear non-Gaussian setting are desired. The main focus of this dissertation is to develop UQ algorithms for nonlinear systems, where uncertainty evolves in a non-Gaussian manner. The algorithms developed are then applied to state estimation of real-world systems. The first part of the dissertation focuses on using polynomial chaos (PC) for uncertainty propagation, and then achieving the estimation task by the use of higher order moment updates and Bayes rule. The second part mainly deals with Frobenius-Perron (FP) operator theory, how it can be used to propagate uncertainty in dynamical systems, and then using it to estimate states by the use of Bayesian update. Finally, a method to represent the process noise in a stochastic dynamical system using a nite term Karhunen-Loeve (KL) expansion is proposed. The uncertainty in the resulting approximated system is propagated using FP operator. The performance of the PC based estimation algorithms were compared with extended Kalman filter (EKF) and unscented Kalman filter (UKF), and the FP operator based techniques were compared with particle filters, when applied to a duffing oscillator system and hypersonic reentry of a vehicle in the atmosphere of Mars. It was found that the accuracy of the PC based estimators is higher than EKF or UKF and the FP operator based estimators were computationally superior to the particle filtering algorithms

    Guidance, navigation and control system for autonomous proximity operations and docking of spacecraft

    Get PDF
    This study develops an integrated guidance, navigation and control system for use in autonomous proximity operations and docking of spacecraft. A new approach strategy is proposed based on a modified system developed for use with the International Space Station. It is composed of three V-bar hops in the closing transfer phase, two periods of stationkeeping and a straight line V-bar approach to the docking port. Guidance, navigation and control functions are independently designed and are then integrated in the form of linear Gaussian-type control. The translational maneuvers are determined through the integration of the state-dependent Riccati equation control formulated using the nonlinear relative motion dynamics with the weight matrices adjusted at the steady state condition. The reference state is provided by a guidance function, and the relative navigation is performed using a rendezvous laser vision system and a vision sensor system, where a sensor mode change is made along the approach in order to provide effective navigation. The rotational maneuvers are determined through a linear quadratic Gaussian-type control using star trackers and gyros, and a vision sensor. The attitude estimation mode change is made from absolute estimation to relative attitude estimation during the stationkeeping phase inside the approach corridor. The rotational controller provides the precise attitude control using weight matrices adjusted at the steady state condition, including the uncertainty of the moment of inertia and external disturbance torques. A six degree-of-freedom simulation demonstrates that the newly developed GNC system successfully autonomously performs proximity operations and meets the conditions for entering the final docking phase --Abstract, page iii

    Autonomous Trajectory Planning and Guidance Control for Launch Vehicles

    Get PDF
    This open access book highlights the autonomous and intelligent flight control of future launch vehicles for improving flight autonomy to plan ascent and descent trajectories onboard, and autonomously handle unexpected events or failures during the flight. Since the beginning of the twenty-first century, space launch activities worldwide have grown vigorously. Meanwhile, commercial launches also account for the booming trend. Unfortunately, the risk of space launches still exists and is gradually increasing in line with the rapidly rising launch activities and commercial rockets. In the history of space launches, propulsion and control systems are the two main contributors to launch failures. With the development of information technologies, the increase of the functional density of hardware products, the application of redundant or fault-tolerant solutions, and the improvement of the testability of avionics, the launch losses caused by control systems exhibit a downward trend, and the failures induced by propulsion systems become the focus of attention. Under these failures, the autonomous planning and guidance control may save the missions. This book focuses on the latest progress of relevant projects and academic studies of autonomous guidance, especially on some advanced methods which can be potentially real-time implemented in the future control system of launch vehicles. In Chapter 1, the prospect and technical challenges are summarized by reviewing the development of launch vehicles. Chapters 2 to 4 mainly focus on the flight in the ascent phase, in which the autonomous guidance is mainly reflected in the online planning. Chapters 5 and 6 mainly discuss the powered descent guidance technologies. Finally, since aerodynamic uncertainties exert a significant impact on the performance of the ascent / landing guidance control systems, the estimation of aerodynamic parameters, which are helpful to improve flight autonomy, is discussed in Chapter 7. The book serves as a valuable reference for researchers and engineers working on launch vehicles. It is also a timely source of information for graduate students interested in the subject

    Satellite Cluster Tracking via Extent Estimation

    Get PDF
    Clusters of closely-spaced objects in orbit present unique tracking and prediction challenges. Association of observations to individual objects is often not possible until the objects have drifted sufficiently far apart from one another. This dissertation proposes a new paradigm for initial tracking of these clusters of objects: instead of tracking the objects independently, the cluster is tracked as a single entity, parameterized by its centroid and extent, or shape. The feasibility of this method is explored using a decoupled centroid and extent estimation scheme. The dynamics of the centroid of a cluster of satellites are studied, and a set of modified equinoctial elements is shown to minimize the discrepancy between the motion of the centroid and the observation-space centroid. The extent estimator is formulated as a matrix-variate particle filter. Several matrix similarity measures are tested as the filter weighting function, and the Bhattacharyya distance is shown to outperform the others in test cases. Finally, the combined centroid and extent filter is tested on a set of three on-orbit breakup events, generated using the NASA standard breakup model and simulated using realistic force models. The filter is shown to perform well across low-Earth, geosynchronous, and highly-elliptical orbits, with centroid error generally below five kilometers and well-fitting extent estimates. These results demonstrate that a decoupled centroid and extent filter can effectively track clusters of closely-spaced satellites. This could improve spaceflight safety by providing quantitative tracking information for the entire cluster much earlier than would otherwise be available through typical means

    A comparison of multiple techniques for the reconstruction of entry, descent, and landing trajectories and atmospheres

    Get PDF
    The primary importance of trajectory reconstruction is to assess the accuracy of pre-flight predictions of the entry trajectory. While numerous entry systems have flown, often these systems are not adequately instrumented or the flight team not adequately funded to perform the statistical engineering reconstruction required to quantify performance and feed-forward lessons learned into future missions. As such, entry system performance and reliability levels remain unsubstantiated and improvement in aerothermodynamic and flight dynamics modeling remains data poor. The comparison is done in an effort to quantitatively and qualitatively compare Kalman filtering methods of reconstructing trajectories and atmospheric conditions from entry systems flight data. The first Kalman filter used is the extended Kalman filter. Extended Kalman filtering has been used extensively in trajectory reconstruction both for orbiting spacecraft and for planetary probes. The second Kalman filter is the unscented Kalman filter. Additionally, a technique for using collocation to reconstruct trajectories is formulated, and collocation's usefulness for trajectory simulation is demonstrated for entry, descent, and landing trajectories using a method developed here to deterministically find the state variables of the trajectory without nonlinear programming. Such an approach could allow one to utilize the same collocation trajectory design tools for the subsequent reconstruction.Ph.D.Committee Chair: Braun, Robert; Committee Member: Lisano, Michael; Committee Member: Russell, Ryan; Committee Member: Striepe, Scott; Committee Member: Volovoi, Vital

    Advances in Modeling of Fluid Dynamics

    Get PDF
    This book contains twelve chapters detailing significant advances and applications in fluid dynamics modeling with focus on biomedical, bioengineering, chemical, civil and environmental engineering, aeronautics, astronautics, and automotive. We hope this book can be a useful resource to scientists and engineers who are interested in fundamentals and applications of fluid dynamics
    corecore