3,818 research outputs found

    Channel estimation, data detection and carrier frequency offset estimation in OFDM systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) plays an important role in the implementation of high data rate communication. In this thesis, the problems of data detection and channel and carrier frequency offset estimation in OFDM systems are studied. Multi-symbol non-coherent data detection is studied which performs data detection by processing multiple symbols without the knowledge of the channel impulse response (CIR). For coherent data detection, the CIR needs to be estimated. Our objective in this thesis is to work on blind channel estimators which can extract the CIR using just one block of received OFDM data. A blind channel estimator for (Single Input Multi Output) SIMO OFDM systems is derived. The conditions under which the estimator is identifiable is studied and solutions to resolve the phase ambiguity of the proposed estimator are given.A channel estimator for superimposed OFDM systems is proposed and its CRB is derived. The idea of simultaneous transmission of pilot and data symbols on each subcarrier, the so called superimposed technique, introduces the efficient use of bandwidth in OFDM context. Pilot symbols can be added to data symbols to enable CIR estimation without sacrificing the data rate. Despite the many advantages of OFDM, it suffers from sensitivity to carrier frequency offset (CFO). CFO destroys the orthogonality between the subcarriers. Thus, it is necessary for the receiver to estimate and compensate for the frequency offset. Several high accuracy estimators are derived. These include CFO estimators, as well as a joint iterative channel/CFO estimator/data detector for superimposed OFDM. The objective is to achieve CFO estimation with using just one OFDM block of received data and without the knowledge of CIR

    The impact of Rayleigh fading channel effects on the RF-DNA fingerprinting process

    Get PDF
    The Internet of Things (IoT) consists of many electronic and electromechanical devices connected to the Internet. It is estimated that the number of connected IoT devices will be between 20 and 50 billion by the year 2020. The need for mechanisms to secure IoT networks will increase dramatically as 70% of the edge devices have no encryption. Previous research has proposed RF-DNA fingerprinting to provide wireless network access security through the exploitation of PHY layer features. RF-DNA fingerprinting takes advantage of unique and distinct characteristics that unintentionally occur within a given radio’s transmit chain during waveform generation. In this work, the application of RF-DNA fingerprinting is extended by developing a Nelder-Mead-based algorithm that estimates the coefficients of an indoor Rayleigh fading channel. The performance of the Nelder-Mead estimator is compared to the Least Square estimator and is assessed with degrading signal-to-noise ratio. The Rayleigh channel coefficients set estimated by the Nelder-Mead estimator is used to remove the multipath channel effects from the radio signal. The resulting channel-compensated signal is the region where the RF-DNA fingerprints are generated and classified. For a signal-to-noise ratio greater than 21 decibels, an average percent correct classification of more than 95% was achieved in a two-reflector channel

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    Design and Validation of a Software Defined Radio Testbed for DVB-T Transmission

    Get PDF
    This paper describes the design and validation of a Software Defined Radio (SDR) testbed, which can be used for Digital Television transmission using the Digital Video Broadcasting - Terrestrial (DVB-T) standard. In order to generate a DVB-T-compliant signal with low computational complexity, we design an SDR architecture that uses the C/C++ language and exploits multithreading and vectorized instructions. Then, we transmit the generated DVB-T signal in real time, using a common PC equipped with multicore central processing units (CPUs) and a commercially available SDR modem board. The proposed SDR architecture has been validated using fixed TV sets, and portable receivers. Our results show that the proposed SDR architecture for DVB-T transmission is a low-cost low-complexity solution that, in the worst case, only requires less than 22% of CPU load and less than 170 MB of memory usage, on a 3.0 GHz Core i7 processor. In addition, using the same SDR modem board, we design an off-line software receiver that also performs time synchronization and carrier frequency offset estimation and compensation

    Master of Science

    Get PDF
    thesisChannel estimation techniques are crucial for reliable communications. This thesis is concerned with channel estimation in a #12;lter bank multicarrier spread spectrum (FBMC-SS) system. We explore two channel estimator options: (i) a method that makes use of a periodic preamble and mimics the channel estimation techniques that are widely used in OFDM-based systems; and (ii) a method that stays within the traditional realm of #12;lter bank signal processing. For the case where the channel noise is white, both methods are analyzed in detail and their performance is compared against their respective Cramer-Rao Lower Bounds (CRLB). Advantages and disadvantages of the two methods under di#11;erent channel conditions are also discussed to provide insight to the reader as to when one will outperform the other. After the theoretical exercise of deriving these channel estimation algorithms, we examine some practical considerations for the traditional channel estimation approach such as the channel delay spread and the e#11;ects of signal interference. First, a set of guidelines about designing the subcarrier spacing of FMBC-SS vs. the channel coherence bandwidth are provided to ensure channel estimates are su#14;ciently unbiased. Next, we provide a method for detecting the channel delay spread and rejecting in-band interference that results in nearly unbiased channel estimation scheme that can achieve a performance close to the CRLB in low SNR environments

    Information-theoretic analysis of MIMO channel sounding

    Full text link
    The large majority of commercially available multiple-input multiple-output (MIMO) radio channel measurement devices (sounders) is based on time-division multiplexed switching (TDMS) of a single transmit/receive radio-frequency chain into the elements of a transmit/receive antenna array. While being cost-effective, such a solution can cause significant measurement errors due to phase noise and frequency offset in the local oscillators. In this paper, we systematically analyze the resulting errors and show that, in practice, overestimation of channel capacity by several hundred percent can occur. Overestimation is caused by phase noise (and to a lesser extent frequency offset) leading to an increase of the MIMO channel rank. Our analysis furthermore reveals that the impact of phase errors is, in general, most pronounced if the physical channel has low rank (typical for line-of-sight or poor scattering scenarios). The extreme case of a rank-1 physical channel is analyzed in detail. Finally, we present measurement results obtained from a commercially employed TDMS-based MIMO channel sounder. In the light of the findings of this paper, the results obtained through MIMO channel measurement campaigns using TDMS-based channel sounders should be interpreted with great care.Comment: 99 pages, 14 figures, submitted to IEEE Transactions on Information Theor
    • …
    corecore