4,989 research outputs found

    An Overview of EGS Development and Management Suggestions

    Get PDF
    The world is facing the energy challenge to over-reliance to fossil-fuels, the development of renewable energy is inevitable. From a clean and economic view, enhanced geothermal system (EGS) provides an effective mean to utilize geothermal energy to generate. Different form the conventionalhydro geothermal, the host rock of EGS is Hot Dry Rock (HDR), which buries deeper with high temperature (more than 180°C). The generationof EGS is promising. The development of EGS can be combined with the tech Power to geothermal energy. Exceed power is supposed to drive fluid working in HDR layer to obtain geothermal energy for generation. The whole article can be divided into three parts. In the first art, evaluation indexes of EGS as well as pilot EGs Projects (e.g. Fenton Hill and Basel) and exiting EGS project (e.g. Paralana and Newberry) are summarized, which points a general impression on EGS site. The dominate indexes are heat flow, geothermal gradient and thermal storage. The second part is focused on the simulation methods and working fluids selection of EGS. A detailed comparison of the main simulation software (e.g. TOUGH2 and FEHM) is carried out. With the respect of working fluid selection, the comparison between water and CO2 is researched and CO2 is a preferred option for EGS development for less fluid loss and less dissolution to HDR. The art of CO2-EGS is introduced clearly in this part. The third part is about the addition consideration of EGS plant operation, it excludes auxiliary plant support and HSE management

    Study on Ground Engineering and Management of Carbonate Oil Field A under Rolling Development Mode

    Get PDF
    Carbonate rock has the characteristics of complicated accumulation rules, large-scale development, high yield but unstable production. Therefore, the management and control of surface engineering projects of carbonate rock oil and gas reservoirs faces huge difficulties and challenges. The construction of surface engineering should conform to the principle of integrated underground and ground construction and adapt to the oilfield development model. This paper takes the newly added area A of the carbonated oil field as an example to study the ground engineering under the rolling development mode and aims to provide the constructive ideas for the surface engineering under rolling development mode. The overall regional process design adheres to the design concept of "environmental protection, efficiency, and innovation", strictly follows the design specifications, and combines reservoir engineering and oil production engineering programs, oil and gas physical properties and chemical composition, product programs, ground natural conditions, etc. According to the technical and economic analysis and comparison of area A, this paper has worked out a suitable surface engineering construction, pipeline network layout and oil and gas gathering and transportation plan for area A. Some auxiliary management recommendations are also proposed in this paper, like sand prevention management and HSE management for carbonate reservoirs

    Service embedding in IoT networks

    Get PDF
    The Internet of Things (IoT) is the cornerstone of smart applications such as smart buildings, smart factories, home automation, and healthcare automation. These smart applications express their demands in terms of high-level requests. Application requests in service-oriented IoT architectures are translated into a business process (BP) workflow. In this paper, we model such a BP as a virtual network containing a set of virtual nodes and links connected in a specific topology. These virtual nodes represent the requested processing and locations where sensing and/or actuation are needed. The virtual links capture the requested communication requirements between nodes. We introduce a framework, optimized using mixed integer linear programming (MILP), that embeds the BPs from the virtual layer into a lower-level implementation at the IoT physical layer. We formulate the problem of finding the optimal set of IoT nodes and links to embed BPs into the IoT layer considering three objective functions: i) minimizing network and processing power consumption only, ii) minimizing mean traffic latency only, iii) minimizing a weighted combination of power consumption and traffic latency to study the trade-off between minimizing the power consumption and minimizing the traffic latency. We have established, as reference, a scenario where service embedding is performed to meet all the demands with no consideration to power consumption or latency. Compared to this reference scenario, our results indicate that the power savings achieved by our energy efficient embedding scenario is 42% compared with the energy-latency unaware service embedding (ELUSE) reference scenario, while our low latency embedding reduced the traffic latency by an average of 47% compared to the ELUSE scenario. Our combined energy efficient low latency service embedding approach achieved high optimality by jointly realizing 91% of the power and latency reductions obtained under the single objective of minimizing power consumption or latency

    Sustainability Assessment of Community Scale Integrated Energy Systems: Conceptual Framework and Applications

    Get PDF
    abstract: One of the key infrastructures of any community or facility is the energy system which consists of utility power plants, distributed generation technologies, and building heating and cooling systems. In general, there are two dimensions to “sustainability” as it applies to an engineered system. It needs to be designed, operated, and managed such that its environmental impacts and costs are minimal (energy efficient design and operation), and also be designed and configured in a way that it is resilient in confronting disruptions posed by natural, manmade, or random events. In this regard, development of quantitative sustainability metrics in support of decision-making relevant to design, future growth planning, and day-to-day operation of such systems would be of great value. In this study, a pragmatic performance-based sustainability assessment framework and quantitative indices are developed towards this end whereby sustainability goals and concepts can be translated and integrated into engineering practices. New quantitative sustainability indices are proposed to capture the energy system environmental impacts, economic performance, and resilience attributes, characterized by normalized environmental/health externalities, energy costs, and penalty costs respectively. A comprehensive Life Cycle Assessment is proposed which includes externalities due to emissions from different supply and demand-side energy systems specific to the regional power generation energy portfolio mix. An approach based on external costs, i.e. the monetized health and environmental impacts, was used to quantify adverse consequences associated with different energy system components. Further, this thesis also proposes a new performance-based method for characterizing and assessing resilience of multi-functional demand-side engineered systems. Through modeling of system response to potential internal and external failures during different operational temporal periods reflective of diurnal variation in loads and services, the proposed methodology quantifies resilience of the system based on imposed penalty costs to the system stakeholders due to undelivered or interrupted services and/or non-optimal system performance. A conceptual diagram called “Sustainability Compass” is also proposed which facilitates communicating the assessment results and allow better decision-analysis through illustration of different system attributes and trade-offs between different alternatives. The proposed methodologies have been illustrated using end-use monitored data for whole year operation of a university campus energy system.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    Book of Abstracts: 7th International Conference on Smart Energy Systems

    Get PDF
    corecore