2,617 research outputs found

    Information Theoretic Security for Broadcasting of Two Encrypted Sources under Side-Channel Attacks

    Full text link
    We consider the secure communication problem for broadcasting of two encrypted sources. The sender wishes to broadcast two secret messages via two common key cryptosystems. We assume that the adversary can use the side-channel, where the side information on common keys can be obtained via the rate constraint noiseless channel. To solve this problem we formulate the post encryption coding system. On the information leakage on two secrete messages to the adversary, we provide an explicit sufficient condition to attain the exponential decay of this quantity for large block lengths of encrypted sources.Comment: 13 pages, 4 figures. In the current version we we have corrected errors in Fig. 2 and Fig. 4. arXiv admin note: substantial text overlap with arXiv:1801.02563, arXiv:1801.0492

    Error Free Perfect Secrecy Systems

    Full text link
    Shannon's fundamental bound for perfect secrecy says that the entropy of the secret message cannot be larger than the entropy of the secret key initially shared by the sender and the legitimate receiver. Massey gave an information theoretic proof of this result, however this proof does not require independence of the key and ciphertext. By further assuming independence, we obtain a tighter lower bound, namely that the key entropy is not less than the logarithm of the message sample size in any cipher achieving perfect secrecy, even if the source distribution is fixed. The same bound also applies to the entropy of the ciphertext. The bounds still hold if the secret message has been compressed before encryption. This paper also illustrates that the lower bound only gives the minimum size of the pre-shared secret key. When a cipher system is used multiple times, this is no longer a reasonable measure for the portion of key consumed in each round. Instead, this paper proposes and justifies a new measure for key consumption rate. The existence of a fundamental tradeoff between the expected key consumption and the number of channel uses for conveying a ciphertext is shown. Optimal and nearly optimal secure codes are designed.Comment: Submitted to the IEEE Trans. Info. Theor

    Distributed Source Coding with Encryption Using Correlated Keys

    Full text link
    We pose and investigate the distributed secure source coding based on the common key cryptosystem. This cryptosystem includes the secrecy amplification problem for distributed encrypted sources with correlated keys using post-encryption-compression, which was posed investigated by Santoso and Oohama. In this paper we propose another new security criterion which is generally more strict compared to the commonly used security criterion which is based on the upper-bound of mutual information between the plaintext and the ciphertext. Under this criterion, we establish the necessary and sufficient condition for the secure transmission of correlated sources.Comment: 7 pages, 3 figure. The short version was submitted to ISIT 2021. We have some typos in the short version. Those are fixed in this version. arXiv admin note: text overlap with arXiv:1801.0492
    • …
    corecore