50,238 research outputs found

    Node Embedding over Temporal Graphs

    Full text link
    In this work, we present a method for node embedding in temporal graphs. We propose an algorithm that learns the evolution of a temporal graph's nodes and edges over time and incorporates this dynamics in a temporal node embedding framework for different graph prediction tasks. We present a joint loss function that creates a temporal embedding of a node by learning to combine its historical temporal embeddings, such that it optimizes per given task (e.g., link prediction). The algorithm is initialized using static node embeddings, which are then aligned over the representations of a node at different time points, and eventually adapted for the given task in a joint optimization. We evaluate the effectiveness of our approach over a variety of temporal graphs for the two fundamental tasks of temporal link prediction and multi-label node classification, comparing to competitive baselines and algorithmic alternatives. Our algorithm shows performance improvements across many of the datasets and baselines and is found particularly effective for graphs that are less cohesive, with a lower clustering coefficient

    On Hardness of the Joint Crossing Number

    Full text link
    The Joint Crossing Number problem asks for a simultaneous embedding of two disjoint graphs into one surface such that the number of edge crossings (between the two graphs) is minimized. It was introduced by Negami in 2001 in connection with diagonal flips in triangulations of surfaces, and subsequently investigated in a general form for small-genus surfaces. We prove that all of the commonly considered variants of this problem are NP-hard already in the orientable surface of genus 6, by a reduction from a special variant of the anchored crossing number problem of Cabello and Mohar

    The extremal genus embedding of graphs

    Full text link
    Let Wn be a wheel graph with n spokes. How does the genus change if adding a degree-3 vertex v, which is not in V (Wn), to the graph Wn? In this paper, through the joint-tree model we obtain that the genus of Wn+v equals 0 if the three neighbors of v are in the same face boundary of P(Wn); otherwise, {\deg}(Wn + v) = 1, where P(Wn) is the unique planar embedding of Wn. In addition, via the independent set, we provide a lower bound on the maximum genus of graphs, which may be better than both the result of D. Li & Y. Liu and the result of Z. Ouyang etc: in Europ. J. Combinatorics. Furthermore, we obtain a relation between the independence number and the maximum genus of graphs, and provide an algorithm to obtain the lower bound on the number of the distinct maximum genus embedding of the complete graph Km, which, in some sense, improves the result of Y. Caro and S. Stahl respectively

    Reconstruction of graded groupoids from graded Steinberg algebras

    Get PDF
    We show how to reconstruct a graded ample Hausdorff groupoid with topologically principal neutrally-graded component from the ring structure of its graded Steinberg algebra over any commutative integral domain with 1, together with the embedding of the canonical abelian subring of functions supported on the unit space. We deduce that diagonal-preserving ring isomorphism of Leavitt path algebras implies C∗C^*-isomorphism of C∗C^*-algebras for graphs EE and FF in which every cycle has an exit. This is a joint work with Joan Bosa, Roozbeh Hazrat and Aidan Sims.Universidad de Málaga. Campus de Excelencia internacional Andalucía Tec

    Multiple Network Embedding for Anomaly Detection in Time Series of Graphs

    Full text link
    This paper considers the graph signal processing problem of anomaly detection in time series of graphs. We examine two related, complementary inference tasks: the detection of anomalous graphs within a time series, and the detection of temporally anomalous vertices. We approach these tasks via the adaptation of statistically principled methods for joint graph inference, specifically multiple adjacency spectral embedding (MASE) and omnibus embedding (OMNI). We demonstrate that these two methods are effective for our inference tasks. Moreover, we assess the performance of these methods in terms of the underlying nature of detectable anomalies. Our results delineate the relative strengths and limitations of these procedures, and provide insight into their use. Applied to a large-scale commercial search engine time series of graphs, our approaches demonstrate their applicability and identify the anomalous vertices beyond just large degree change.Comment: 22 pages, 11 figure
    • …
    corecore