26 research outputs found

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    LoRaWAN simulation and analysis for performance enhancement of realistic networks

    Get PDF
    The Internet of Things (IoT) is becoming an ubiquitous technology, with new devices, solutions and applications being developed at an ever-increasing rate. Fundamental to the IoT revolution is the adoption of wireless protocols purposely designed to enable low-cost, long-range communication for numerous connected devices. Low Power Wide Area Networks (LPWANs) are wide area wireless telecommunication networks designed specifically for IoT applications. They allow for long-range communication at a low bit-rate among connected items, such as battery-powered sensors. However, with these benefits come also a number of drawbacks, including the limited data rate available and the reliance on low power channel access methods which can negatively impact performance in a highly dense network. The purpose of the research contained in this work is to measure the performance in terms of Quality-of-Service (QoS), Packet Delivery Ratio (PDR) and scalability of one LPWAN in particular, Long Range Wide Area Network (LoRaWAN), as well as providing possible improvements that current and future network owners can put into practice. LoRaWAN simple channel access protocol, based on pure Additive Links On-line Hawaii Area (ALOHA) is intended to reduce cost, complexity, and energy consumption while increasing transmission range. However, it also severely limits the scalability of the technology, making it more prone to packet collision, despite LoRaWAN being particularly resilient to self-interference, thanks to the underlining, proprietary Long Range (LoRa) modulation. In this thesis, LoRaWAN technology is evaluated through both software simulation and experimental deployments, with the goal of gaining a deeper understanding of the technology to then create better models and better performing deployments. The innovations and novel results presented throughout will accelerate the pervasiveness of LPWAN networks such as LoRaWAN, and ultimately their effectivness. Despite being developed in 2015, LoRa and LoRaWAN have both not been fully characterised, particularly in regard to large-scale behaviour. This is partly due to the low feasibility of deploying vast networks. To address this, the first recorded instance of anurban digital twin of 20 devices LoRaWAN network was deployed and analysed. The available simulation models, despite being successfully used in various research studies, are also not fully complete, and a deeper understanding of the technology is required to fix some remaining open issues. To give additional insight into their operation as well as practical improvements that can be carried out to maximise performance, both from a consumer and an industrial standpoint, existing LoRa and LoRaWAN modules for the network simulator NS-3 are enhanced and used throughout the work presented. Scalability and Quality-of-Service improvements are also presented, based on the knowledge gaps found in current LoRaWAN research and the results of the simulations performed. In particular, improvements on PDR up to 10% are reported using novel techniques of downlink independent optimisation, and new insight on the positioning of gateways to achieve maximum scalability in a two-gateways network are also highlighted

    URLLC for 5G and Beyond: Requirements, Enabling Incumbent Technologies and Network Intelligence

    Get PDF
    The tactile internet (TI) is believed to be the prospective advancement of the internet of things (IoT), comprising human-to-machine and machine-to-machine communication. TI focuses on enabling real-time interactive techniques with a portfolio of engineering, social, and commercial use cases. For this purpose, the prospective 5{th} generation (5G) technology focuses on achieving ultra-reliable low latency communication (URLLC) services. TI applications require an extraordinary degree of reliability and latency. The 3{rd} generation partnership project (3GPP) defines that URLLC is expected to provide 99.99% reliability of a single transmission of 32 bytes packet with a latency of less than one millisecond. 3GPP proposes to include an adjustable orthogonal frequency division multiplexing (OFDM) technique, called 5G new radio (5G NR), as a new radio access technology (RAT). Whereas, with the emergence of a novel physical layer RAT, the need for the design for prospective next-generation technologies arises, especially with the focus of network intelligence. In such situations, machine learning (ML) techniques are expected to be essential to assist in designing intelligent network resource allocation protocols for 5G NR URLLC requirements. Therefore, in this survey, we present a possibility to use the federated reinforcement learning (FRL) technique, which is one of the ML techniques, for 5G NR URLLC requirements and summarizes the corresponding achievements for URLLC. We provide a comprehensive discussion of MAC layer channel access mechanisms that enable URLLC in 5G NR for TI. Besides, we identify seven very critical future use cases of FRL as potential enablers for URLLC in 5G NR

    NASA Tech Briefs, December 1988

    Get PDF
    This month's technical section includes forecasts for 1989 and beyond by NASA experts in the following fields: Integrated Circuits; Communications; Computational Fluid Dynamics; Ceramics; Image Processing; Sensors; Dynamic Power; Superconductivity; Artificial Intelligence; and Flow Cytometry. The quotes provide a brief overview of emerging trends, and describe inventions and innovations being developed by NASA, other government agencies, and private industry that could make a significant impact in coming years. A second bonus feature in this month's issue is the expanded subject index that begins on page 98. The index contains cross-referenced listings for all technical briefs appearing in NASA Tech Briefs during 1988

    Proceedings of the Third International Mobile Satellite Conference (IMSC 1993)

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial cellular communications services. While the first and second International Mobile Satellite Conferences (IMSC) mostly concentrated on technical advances, this Third IMSC also focuses on the increasing worldwide commercial activities in Mobile Satellite Services. Because of the large service areas provided by such systems, it is important to consider political and regulatory issues in addition to technical and user requirements issues. Topics covered include: the direct broadcast of audio programming from satellites; spacecraft technology; regulatory and policy considerations; advanced system concepts and analysis; propagation; and user requirements and applications

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore