93 research outputs found

    An Iterative Detection Aided Unequal Error Protection Wavelet Video Scheme Using Irregular Convolutional Codes

    No full text
    A wavelet-based videophone scheme proposed, where the video bits are Unequal Error Protection (UEP) using Irregular Convolutional Codes (IRCCs). The proposed system uses Adaptive Arithmetic Coding (AAC) for encoding the motion vectors and individual wavelet subband coefficients. The turbo equalized IRCC-aided videophone scheme is capable of attaining a near unimpaired video quality for channel Signal-to-Noise Ratios (SNRs) in excess of about 4.5dB over a five-path dispersive AWGN channel

    Error-resilient performance of Dirac video codec over packet-erasure channel

    Get PDF
    Video transmission over the wireless or wired network requires error-resilient mechanism since compressed video bitstreams are sensitive to transmission errors because of the use of predictive coding and variable length coding. This paper investigates the performance of a simple and low complexity error-resilient coding scheme which combines source and channel coding to protect compressed bitstream of wavelet-based Dirac video codec in the packet-erasure channel. By partitioning the wavelet transform coefficients of the motion-compensated residual frame into groups and independently processing each group using arithmetic and Forward Error Correction (FEC) coding, Dirac could achieves the robustness to transmission errors by giving the video quality which is gracefully decreasing over a range of packet loss rates up to 30% when compared with conventional FEC only methods. Simulation results also show that the proposed scheme using multiple partitions can achieve up to 10 dB PSNR gain over its existing un-partitioned format. This paper also investigates the error-resilient performance of the proposed scheme in comparison with H.264 over packet-erasure channel

    Joint source/channel decoding of scalefactors in MPEG-AAC encoded bitstreams

    No full text
    International audienceThis paper describes a bandwidth-efficient method for improved decoding of MPEG-AAC bitstreams when the encoded data are transmitted over a noisy channel. Assuming that the critical part (headers) of each frame has been correctly received, we apply a soft-decoding method to reconstruct the scalefactors, which represent a highly noise-sensitive part of the bitstream. The damaged spectral data are reconstructed using an intra-frame error concealment method. Two methods for soft decoding of scalefactors are described: blind mode and informed mode. In the latter, a very small amount of additional data is included in the bitstream. At medium SNR, this method provides a significant improvement in perceptual signal quality compared to the classical hard-decoding method
    • 

    corecore