4,420 research outputs found

    Robust Transmissions in Wireless Powered Multi-Relay Networks with Chance Interference Constraints

    Full text link
    In this paper, we consider a wireless powered multi-relay network in which a multi-antenna hybrid access point underlaying a cellular system transmits information to distant receivers. Multiple relays capable of energy harvesting are deployed in the network to assist the information transmission. The hybrid access point can wirelessly supply energy to the relays, achieving multi-user gains from signal and energy cooperation. We propose a joint optimization for signal beamforming of the hybrid access point as well as wireless energy harvesting and collaborative beamforming strategies of the relays. The objective is to maximize network throughput subject to probabilistic interference constraints at the cellular user equipment. We formulate the throughput maximization with both the time-switching and power-splitting schemes, which impose very different couplings between the operating parameters for wireless power and information transfer. Although the optimization problems are inherently non-convex, they share similar structural properties that can be leveraged for efficient algorithm design. In particular, by exploiting monotonicity in the throughput, we maximize it iteratively via customized polyblock approximation with reduced complexity. The numerical results show that the proposed algorithms can achieve close to optimal performance in terms of the energy efficiency and throughput.Comment: 14 pages, 8 figure

    Directional Relays for Multi-Hop Cooperative Cognitive Radio Networks

    Get PDF
    In this paper, we investigate power allocation and beamforming in a relay assisted cognitive radio (CR) network. Our objective is to maximize the performance of the CR network while limiting interference in the direction of the primary users (PUs). In order to achieve these goals, we first consider joint power allocation and beamforming for cognitive nodes in direct links. Then, we propose an optimal power allocation strategy for relay nodes in indirect transmissions. Unlike the conventional cooperative relaying networks, the applied relays are equipped with directional antennas to further reduce the interference to PUs and meet the CR network requirements. The proposed approach employs genetic algorithm (GA) to solve the optimization problems. Numerical simulation results illustrate the quality of service (QoS) satisfaction in both primary and secondary networks. These results also show that notable improvements are achieved in the system performance if the conventional omni-directional relays are replaced with directional ones
    corecore