3,837 research outputs found

    Joint Communication, Computation, Caching, and Control in Big Data Multi-access Edge Computing

    Full text link
    The concept of multi-access edge computing (MEC) has been recently introduced to supplement cloud computing by deploying MEC servers to the network edge so as to reduce the network delay and alleviate the load on cloud data centers. However, compared to a resourceful cloud, an MEC server has limited resources. When each MEC server operates independently, it cannot handle all of the computational and big data demands stemming from the users devices. Consequently, the MEC server cannot provide significant gains in overhead reduction due to data exchange between users devices and remote cloud. Therefore, joint computing, caching, communication, and control (4C) at the edge with MEC server collaboration is strongly needed for big data applications. In order to address these challenges, in this paper, the problem of joint 4C in big data MEC is formulated as an optimization problem whose goal is to maximize the bandwidth saving while minimizing delay, subject to the local computation capability of user devices, computation deadline, and MEC resource constraints. However, the formulated problem is shown to be non-convex. To make this problem convex, a proximal upper bound problem of the original formulated problem that guarantees descent to the original problem is proposed. To solve the proximal upper bound problem, a block successive upper bound minimization (BSUM) method is applied. Simulation results show that the proposed approach increases bandwidth-saving and minimizes delay while satisfying the computation deadlines

    The edge cloud: A holistic view of communication, computation and caching

    Get PDF
    The evolution of communication networks shows a clear shift of focus from just improving the communications aspects to enabling new important services, from Industry 4.0 to automated driving, virtual/augmented reality, Internet of Things (IoT), and so on. This trend is evident in the roadmap planned for the deployment of the fifth generation (5G) communication networks. This ambitious goal requires a paradigm shift towards a vision that looks at communication, computation and caching (3C) resources as three components of a single holistic system. The further step is to bring these 3C resources closer to the mobile user, at the edge of the network, to enable very low latency and high reliability services. The scope of this chapter is to show that signal processing techniques can play a key role in this new vision. In particular, we motivate the joint optimization of 3C resources. Then we show how graph-based representations can play a key role in building effective learning methods and devising innovative resource allocation techniques.Comment: to appear in the book "Cooperative and Graph Signal Pocessing: Principles and Applications", P. Djuric and C. Richard Eds., Academic Press, Elsevier, 201
    • …
    corecore