183 research outputs found

    A Novel PTS Scheme for PAPR Reduction of Filtered-OFDM Signals without Side Information

    Get PDF
    In this paper, a novel partial transmit sequence (PTS) scheme is proposed for reducing the peak-to-average power ratio (PAPR) of filtered orthogonal frequency division multiplexing (f-OFDM) systems. The PTS method is modified such that no side information (SI) transmission is needed. The data and pilot recovery are accomplished by a simple detector, making use of the correlation property of the Hadamard sequence and the transparency property of the pilot signal and an iterative phase detection is further added in a fading channel. Simulation results show that the modified solution provides a higher correct detection probability without increasing the system complexity nor affecting the PAPR suppression performance

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    Investigations on Filtered OFDM with Selective Mapping Method and Partial Transmit Sequence Technique for Future Generation Mobile Communication Systems

    Get PDF
    Future generation mobile communication system requires asynchronous transmission of data, reduced out-of-band power emission, low peak-to-average power ratio, low latency, high data transmission rate, better spectrum, energy, and power efficiency, etc. Investigations on suitable waveform candidates for future-generation mobile communication have been reported in this paper. Filtered Orthogonal Frequency Division Multiplexing (F- OFDM), F- OFDM with Selective Mapping Method (SLM), and F- OFDM with Partial Transmit Sequence (PTS) technique, have been investigated. Its performances have been evaluated in terms of peak-to-average power ratio (PAPR), bit error rate (BER), and out-of-band power emissions. F–OFDM is a suitable candidate for future-generation mobile communication systems that can be used with single-rate or multirate filters. It can also be used in combination with other PAPR reduction techniques. F-OFDM with PTS technique requires a smaller number of IFFT operations than F-OFDM with SLM. The result obtained from my present investigations reveals that F-OFDM with the PTS technique has 4.3 dB less PAPR than that of OFDM at the cost of marginal increase in the BER value

    Numerical Simulation and Design of Low PAPR FBMC Communication System for 5G Applications

    Get PDF
    Unlike SC-FDMA (Single-Carrier Frequency Division Multiple Access), merging only DFT (Discrete Fourier Transform) addition with FBMC-OQAM (filter group multi-carrier with offset quadrature amplitude modulation) only cuts the marginal PAPR. (Peak-to-average power ratio). To take advantage of the single carrier effect of DFT extension, special conditions for the coefficients of the IQ (in-phase and quadrature phase) channels of every single subcarrier ought to be met. As a beginning point, we first originate this form, which we call the ITSM (Identical Time-Shifted Multi-Carrier) condition. Then, depending on this condition, we put forward a new FBMC for low PAPR. The foremost features of the offered way out are summarized as: First, to additionally raise the PAPR reduction, we created four candidate versions of the FBMC waveform for DFT spreading out and ITSM conditions and carefully chosen one with the least peak power. Even with various candidate generations, unlike the traditional SI (Side information) based PAPR reduction scheme, the focal computational fragments (such as DFT and IDFT) are shared and need only be executed one time. Therefore, matched to the prior DFT-expanded FBMC, the overhead in complexity is small, and the recommended pattern can realize a PAPR reduction comparable to SC-FDMA. Second, in the projected pattern each one pass on only two bits of SI from a block of FBMC-OQAM symbols. And so, the SI overhead is meaningfully lesser than a conventional SI-based scheme such as SLM (Selective Mapping) or PTS (Partial Transmission Sequence).The whole work is executed using MATLAB software. The PAPR of FBMC system has been significantly reduced after the application of proposed algorithm. PAPR was reduced by 25 % after the use of DFT spreading and ITSM conditioning

    PAPR reduction techniques in generalized inverse discrete fourier transform non-orthogonal frequency division multiplexing system

    Get PDF
    A promising system of Generalized Inverse Discrete Fourier Transform Non-Orthogonal Frequency Division Multiplexing (GIDFT n-OFDM) system can fulfil the requirement of supporting higher data rate in Fifth Generation (5G) technology. However, this system experience High Peak to Average Power Ratio (PAPR) due to massive number of subcarriers signal is transmitted. In this paper, three types of usual PAPR reduction techniques were applied in GIDFT n-OFDM system which are Clipping, Partial transmit Transform (PTS) and Selective Mapping (SLM). The system performance is compared and evaluated using Complementary Cumulative Distribution Function (CCDF) plot. Simulation results show that SLM technique give significant reduction of PAPR 9 dB of the original performance

    Enhanced Multicarrier Techniques for Professional Ad-Hoc and Cell-Based Communications (EMPhAtiC) Document Number D3.3 Reduction of PAPR and non linearities effects

    Get PDF
    Livrable d'un projet Européen EMPHATICLike other multicarrier modulation techniques, FBMC suffers from high peak-to-average power ratio (PAPR), impacting its performance in the presence of a nonlinear high power amplifier (HPA) in two ways. The first impact is an in-band distortion affecting the error rate performance of the link. The second impact is an out-of-band effect appearing as power spectral density (PSD) regrowth, making the coexistence between FBMC based broad-band Professional Mobile Radio (PMR) systems with existing narrowband systems difficult to achieve. This report addresses first the theoretical analysis of in-band HPA distortions in terms of Bit Error Rate. Also, the out-of band impact of HPA nonlinearities is studied in terms of PSD regrowth prediction. Furthermore, the problem of PAPR reduction is addressed along with some HPA linearization techniques and nonlinearity compensation approaches

    Multicarrier-signal design with low peaks and low out-of-band power

    Get PDF
    Projecte fet en col.laboració amb el Department of Electrical and Information Technology. Lund UniversityThe high peak-to-average power ratio (PAPR) and the high out-of-band power (OBP) are two major drawbacks of multicarrier communication systems. Many PAPR reduction and OBP supression techniques have been proposed in the literature whereas not much has been proposed regarding the jointly reduction performance. This thesis focuses on joint reducing time-domain peaks and out-of-band leakage of OFDM signals. The resulting algorithm combines the bene ts of both methods and yields better results than each method does separately
    corecore