1,417 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    A study on stryi-icnos potatorum and pisum sativum as natural coagulants for meat food processing wastewater

    Get PDF
    Slow maintained load test is widely used by contractors in Malaysia to ensure the driven pile could accommodate the design load of the structure. Slow maintained load test is a test to determine load-settlement curve and pile capacity for a period of time using conventional load test. Conventional static pile load test equipment is large in size thus making it heavier and takes a long time to install. In addition, it consumes a lot of space which causes congestion at construction sites. Therefore, the objective of this thesis is to conduct a conventional load test by replacing the pile kentledge load with anchorage and reaction pile. Preparations of ten designs comprising six commercial designs were reviewed. In addition, four proposed designs were suggested for the setup. Final design was produced based on its safety factors and criteria referred via literature review. The test frame consists of reaction frame with four reaction helical pile with two helixes per reaction pile. The deformation shapes, safety factor, stress, and strain of the design and finite element of the model has been analysed with the use of SolidWorks and Pia.xis 30 software. SolidWorks software emphasizes on the model load-deflection relationship while Plaxis 30 ensures a correlation of reaction between pile uplift force and soil. Then, the model was tested on site to determine the relationship between physical load­deflection and pile-soil uplift force. The results of uplift force and displacement for numerical and physical test were nearly identical which increment of load­displacement graph pattern. The higher the uplift force, the higher the displacement obtained. In conclusion, the result obtained and the design may be considered as a guideline for future application of sustainable slow maintained pile load test
    corecore