116 research outputs found

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    SingNet: A Real-time Singing Voice Beat and Downbeat Tracking System

    Full text link
    Singing voice beat and downbeat tracking posses several applications in automatic music production, analysis and manipulation. Among them, some require real-time processing, such as live performance processing and auto-accompaniment for singing inputs. This task is challenging owing to the non-trivial rhythmic and harmonic patterns in singing signals. For real-time processing, it introduces further constraints such as inaccessibility to future data and the impossibility to correct the previous results that are inconsistent with the latter ones. In this paper, we introduce the first system that tracks the beats and downbeats of singing voices in real-time. Specifically, we propose a novel dynamic particle filtering approach that incorporates offline historical data to correct the online inference by using a variable number of particles. We evaluate the performance on two datasets: GTZAN with the separated vocal tracks, and an in-house dataset with the original vocal stems. Experimental result demonstrates that our proposed approach outperforms the baseline by 3-5%.Comment: Accepted for 2023 International Conference on Acoustics, Speech, and Signal Processing (ICASSP-2023

    A rhythm-based game for stroke rehabilitation

    Get PDF
    corecore