24,564 research outputs found

    Joint Attention for Automated Video Editing

    Get PDF
    International audienceJoint attention refers to the shared focal points of attention for occupants in a space. In this work, we introduce a computational definition of joint attention for the automated editing of meetings in multi-camera environments from the AMI corpus. Using extracted head pose and individual headset amplitude as features, we developed three editing methods: (1) a naive audio-based method that selects the camera using only the headset input, (2) a rule-based edit that selects cameras at a fixed pacing using pose data, and (3) an editing algorithm using LSTM (Long-short term memory) learned joint-attention from both pose and audio data, trained on expert edits. The methods are evaluated qualitatively against the human edit, and quantitatively in a user study with 22 participants. Results indicate that LSTM-trained joint attention produces edits that are comparable to the expert edit, offering a wider range of camera views than audio, while being more generalizable as compared to rule-based methods

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Interactive context-aware user-driven metadata correction in digital libraries

    Get PDF
    Personal name variants are a common problem in digital libraries, reducing the precision of searches and complicating browsing-based interaction. The book-centric approach of name authority control has not scaled to match the growth and diversity of digital repositories. In this paper, we present a novel system for user-driven integration of name variants when interacting with web-based information-in particular digital library-systems. We approach these issues via a client-side JavaScript browser extension that can reorganize web content and also integrate remote data sources. Designed to be agnostic towards the web sites it is applied to, we illustrate the developed proof-of-concept system through worked examples using three different digital libraries. We discuss the extensibility of the approach in the context of other user-driven information systems and the growth of the Semantic Web

    Personalized Cinemagraphs using Semantic Understanding and Collaborative Learning

    Full text link
    Cinemagraphs are a compelling way to convey dynamic aspects of a scene. In these media, dynamic and still elements are juxtaposed to create an artistic and narrative experience. Creating a high-quality, aesthetically pleasing cinemagraph requires isolating objects in a semantically meaningful way and then selecting good start times and looping periods for those objects to minimize visual artifacts (such a tearing). To achieve this, we present a new technique that uses object recognition and semantic segmentation as part of an optimization method to automatically create cinemagraphs from videos that are both visually appealing and semantically meaningful. Given a scene with multiple objects, there are many cinemagraphs one could create. Our method evaluates these multiple candidates and presents the best one, as determined by a model trained to predict human preferences in a collaborative way. We demonstrate the effectiveness of our approach with multiple results and a user study.Comment: To appear in ICCV 2017. Total 17 pages including the supplementary materia

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    You said that?

    Full text link
    We present a method for generating a video of a talking face. The method takes as inputs: (i) still images of the target face, and (ii) an audio speech segment; and outputs a video of the target face lip synched with the audio. The method runs in real time and is applicable to faces and audio not seen at training time. To achieve this we propose an encoder-decoder CNN model that uses a joint embedding of the face and audio to generate synthesised talking face video frames. The model is trained on tens of hours of unlabelled videos. We also show results of re-dubbing videos using speech from a different person.Comment: https://youtu.be/LeufDSb15Kc British Machine Vision Conference (BMVC), 201
    corecore