1,657 research outputs found

    Joint Morphological and Syntactic Disambiguation

    Get PDF
    In morphologically rich languages, should morphological and syntactic disambiguation be treated sequentially or as a single problem? We describe several efficient, probabilistically interpretable ways to apply joint inference to morphological and syntactic disambiguation using lattice parsing. Joint inference is shown to compare favorably to pipeline parsing methods across a variety of component models. State-of-the-art performance on Hebrew Treebank parsing is demonstrated using the new method. The benefits of joint inference are modest with the current component models, but appear to increase as components themselves improve

    Joint morphological-lexical language modeling for processing morphologically rich languages with application to dialectal Arabic

    Get PDF
    Language modeling for an inflected language such as Arabic poses new challenges for speech recognition and machine translation due to its rich morphology. Rich morphology results in large increases in out-of-vocabulary (OOV) rate and poor language model parameter estimation in the absence of large quantities of data. In this study, we present a joint morphological-lexical language model (JMLLM) that takes advantage of Arabic morphology. JMLLM combines morphological segments with the underlying lexical items and additional available information sources with regards to morphological segments and lexical items in a single joint model. Joint representation and modeling of morphological and lexical items reduces the OOV rate and provides smooth probability estimates while keeping the predictive power of whole words. Speech recognition and machine translation experiments in dialectal-Arabic show improvements over word and morpheme based trigram language models. We also show that as the tightness of integration between different information sources increases, both speech recognition and machine translation performances improve

    Methods for Amharic part-of-speech tagging

    Get PDF
    The paper describes a set of experiments involving the application of three state-of- the-art part-of-speech taggers to Ethiopian Amharic, using three different tagsets. The taggers showed worse performance than previously reported results for Eng- lish, in particular having problems with unknown words. The best results were obtained using a Maximum Entropy ap- proach, while HMM-based and SVM- based taggers got comparable results

    What do Neural Machine Translation Models Learn about Morphology?

    Full text link
    Neural machine translation (MT) models obtain state-of-the-art performance while maintaining a simple, end-to-end architecture. However, little is known about what these models learn about source and target languages during the training process. In this work, we analyze the representations learned by neural MT models at various levels of granularity and empirically evaluate the quality of the representations for learning morphology through extrinsic part-of-speech and morphological tagging tasks. We conduct a thorough investigation along several parameters: word-based vs. character-based representations, depth of the encoding layer, the identity of the target language, and encoder vs. decoder representations. Our data-driven, quantitative evaluation sheds light on important aspects in the neural MT system and its ability to capture word structure.Comment: Updated decoder experiment

    A Machine Learning Approach For Opinion Holder Extraction In Arabic Language

    Full text link
    Opinion mining aims at extracting useful subjective information from reliable amounts of text. Opinion mining holder recognition is a task that has not been considered yet in Arabic Language. This task essentially requires deep understanding of clauses structures. Unfortunately, the lack of a robust, publicly available, Arabic parser further complicates the research. This paper presents a leading research for the opinion holder extraction in Arabic news independent from any lexical parsers. We investigate constructing a comprehensive feature set to compensate the lack of parsing structural outcomes. The proposed feature set is tuned from English previous works coupled with our proposed semantic field and named entities features. Our feature analysis is based on Conditional Random Fields (CRF) and semi-supervised pattern recognition techniques. Different research models are evaluated via cross-validation experiments achieving 54.03 F-measure. We publicly release our own research outcome corpus and lexicon for opinion mining community to encourage further research

    A non-projective greedy dependency parser with bidirectional LSTMs

    Full text link
    The LyS-FASTPARSE team presents BIST-COVINGTON, a neural implementation of the Covington (2001) algorithm for non-projective dependency parsing. The bidirectional LSTM approach by Kipperwasser and Goldberg (2016) is used to train a greedy parser with a dynamic oracle to mitigate error propagation. The model participated in the CoNLL 2017 UD Shared Task. In spite of not using any ensemble methods and using the baseline segmentation and PoS tagging, the parser obtained good results on both macro-average LAS and UAS in the big treebanks category (55 languages), ranking 7th out of 33 teams. In the all treebanks category (LAS and UAS) we ranked 16th and 12th. The gap between the all and big categories is mainly due to the poor performance on four parallel PUD treebanks, suggesting that some `suffixed' treebanks (e.g. Spanish-AnCora) perform poorly on cross-treebank settings, which does not occur with the corresponding `unsuffixed' treebank (e.g. Spanish). By changing that, we obtain the 11th best LAS among all runs (official and unofficial). The code is made available at https://github.com/CoNLL-UD-2017/LyS-FASTPARSEComment: 12 pages, 2 figures, 5 table
    corecore