581 research outputs found

    Joint Antenna Selection and Phase-Only Beamforming Using Mixed-Integer Nonlinear Programming

    Full text link
    In this paper, we consider the problem of joint antenna selection and analog beamformer design in downlink single-group multicast networks. Our objective is to reduce the hardware costs by minimizing the number of required phase shifters at the transmitter while fulfilling given distortion limits at the receivers. We formulate the problem as an L0 minimization problem and devise a novel branch-and-cut based algorithm to solve the resulting mixed-integer nonlinear program to optimality. We also propose a suboptimal heuristic algorithm to solve the above problem approximately with a low computational complexity. Computational results illustrate that the solutions produced by the proposed heuristic algorithm are optimal in most cases. The results also indicate that the performance of the optimal methods can be significantly improved by initializing with the result of the suboptimal method.Comment: to be presented at WSA 201

    Resource allocation for transmit hybrid beamforming in decoupled millimeter wave multiuser-MIMO downlink

    Get PDF
    This paper presents a study on joint radio resource allocation and hybrid precoding in multicarrier massive multiple-input multiple-output communications for 5G cellular networks. In this paper, we present the resource allocation algorithm to maximize the proportional fairness (PF) spectral efficiency under the per subchannel power and the beamforming rank constraints. Two heuristic algorithms are designed. The proportional fairness hybrid beamforming algorithm provides the transmit precoder with a proportional fair spectral efficiency among users for the desired number of radio-frequency (RF) chains. Then, we transform the number of RF chains or rank constrained optimization problem into convex semidefinite programming (SDP) problem, which can be solved by standard techniques. Inspired by the formulated convex SDP problem, a low-complexity, two-step, PF-relaxed optimization algorithm has been provided for the formulated convex optimization problem. Simulation results show that the proposed suboptimal solution to the relaxed optimization problem is near-optimal for the signal-to-noise ratio SNR <= 10 dB and has a performance gap not greater than 2.33 b/s/Hz within the SNR range 0-25 dB. It also outperforms the maximum throughput and PF-based hybrid beamforming schemes for sum spectral efficiency, individual spectral efficiency, and fairness index
    • …
    corecore