3,086 research outputs found

    Localization and tracking of electronic devices with their unintended emissions

    Get PDF
    The precise localization and tracking of electronic devices via their unintended emissions has a broad range of commercial and security applications. Active stimulation of the receivers of such devices with a known signal generates very low power unintended emissions. This dissertation presents localization and tracking of multiple devices using both simulation and experimental data in the form of five papers. First the localization of multiple emitting devices through active stimulation under multipath fading with a Smooth MUSIC based scheme in the near field region is presented. Spatial smoothing helps to separate the correlated sources and the multipath fading and results confirm improved accuracy. A cost effective near-field localization method is proposed next to locate multiple correlated unintended emitting devices under colored noise conditions using two well separated antenna arrays since colored noise in the environment degrades the subspace-based localization techniques. Subsequently, in order to track moving sources, a near-field scheme by using array output is introduced to monitor direction of arrival (DOA) and the distance between the antenna array and the moving source. The array output, which is a nonlinear function of DOA and distance information, is employed in the Extended Kalman Filter (EKF). In order to show the near- and far-field effect on estimation accuracy, computer simulation results are included for localization and tracking techniques. Finally, an L-shaped array is constructed and a suite of schemes are introduced for localization and tracking of such devices in the three-dimensional environment. Experimental results for localization and tracking of unintended emissions from single and multiple devices in the near-field environment of an antenna array are demonstrated --Abstract, page iv

    Estimation of Sparse MIMO Channels with Common Support

    Get PDF
    We consider the problem of estimating sparse communication channels in the MIMO context. In small to medium bandwidth communications, as in the current standards for OFDM and CDMA communication systems (with bandwidth up to 20 MHz), such channels are individually sparse and at the same time share a common support set. Since the underlying physical channels are inherently continuous-time, we propose a parametric sparse estimation technique based on finite rate of innovation (FRI) principles. Parametric estimation is especially relevant to MIMO communications as it allows for a robust estimation and concise description of the channels. The core of the algorithm is a generalization of conventional spectral estimation methods to multiple input signals with common support. We show the application of our technique for channel estimation in OFDM (uniformly/contiguous DFT pilots) and CDMA downlink (Walsh-Hadamard coded schemes). In the presence of additive white Gaussian noise, theoretical lower bounds on the estimation of SCS channel parameters in Rayleigh fading conditions are derived. Finally, an analytical spatial channel model is derived, and simulations on this model in the OFDM setting show the symbol error rate (SER) is reduced by a factor 2 (0 dB of SNR) to 5 (high SNR) compared to standard non-parametric methods - e.g. lowpass interpolation.Comment: 12 pages / 7 figures. Submitted to IEEE Transactions on Communicatio

    Acoustic Space Learning for Sound Source Separation and Localization on Binaural Manifolds

    Get PDF
    In this paper we address the problems of modeling the acoustic space generated by a full-spectrum sound source and of using the learned model for the localization and separation of multiple sources that simultaneously emit sparse-spectrum sounds. We lay theoretical and methodological grounds in order to introduce the binaural manifold paradigm. We perform an in-depth study of the latent low-dimensional structure of the high-dimensional interaural spectral data, based on a corpus recorded with a human-like audiomotor robot head. A non-linear dimensionality reduction technique is used to show that these data lie on a two-dimensional (2D) smooth manifold parameterized by the motor states of the listener, or equivalently, the sound source directions. We propose a probabilistic piecewise affine mapping model (PPAM) specifically designed to deal with high-dimensional data exhibiting an intrinsic piecewise linear structure. We derive a closed-form expectation-maximization (EM) procedure for estimating the model parameters, followed by Bayes inversion for obtaining the full posterior density function of a sound source direction. We extend this solution to deal with missing data and redundancy in real world spectrograms, and hence for 2D localization of natural sound sources such as speech. We further generalize the model to the challenging case of multiple sound sources and we propose a variational EM framework. The associated algorithm, referred to as variational EM for source separation and localization (VESSL) yields a Bayesian estimation of the 2D locations and time-frequency masks of all the sources. Comparisons of the proposed approach with several existing methods reveal that the combination of acoustic-space learning with Bayesian inference enables our method to outperform state-of-the-art methods.Comment: 19 pages, 9 figures, 3 table
    • …
    corecore