27,671 research outputs found

    Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification

    Get PDF
    Despite the fact that nonlinear subspace learning techniques (e.g. manifold learning) have successfully applied to data representation, there is still room for improvement in explainability (explicit mapping), generalization (out-of-samples), and cost-effectiveness (linearization). To this end, a novel linearized subspace learning technique is developed in a joint and progressive way, called \textbf{j}oint and \textbf{p}rogressive \textbf{l}earning str\textbf{a}teg\textbf{y} (J-Play), with its application to multi-label classification. The J-Play learns high-level and semantically meaningful feature representation from high-dimensional data by 1) jointly performing multiple subspace learning and classification to find a latent subspace where samples are expected to be better classified; 2) progressively learning multi-coupled projections to linearly approach the optimal mapping bridging the original space with the most discriminative subspace; 3) locally embedding manifold structure in each learnable latent subspace. Extensive experiments are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.Comment: accepted in ECCV 201

    Expert Gate: Lifelong Learning with a Network of Experts

    Full text link
    In this paper we introduce a model of lifelong learning, based on a Network of Experts. New tasks / experts are learned and added to the model sequentially, building on what was learned before. To ensure scalability of this process,data from previous tasks cannot be stored and hence is not available when learning a new task. A critical issue in such context, not addressed in the literature so far, relates to the decision which expert to deploy at test time. We introduce a set of gating autoencoders that learn a representation for the task at hand, and, at test time, automatically forward the test sample to the relevant expert. This also brings memory efficiency as only one expert network has to be loaded into memory at any given time. Further, the autoencoders inherently capture the relatedness of one task to another, based on which the most relevant prior model to be used for training a new expert, with finetuning or learning without-forgetting, can be selected. We evaluate our method on image classification and video prediction problems.Comment: CVPR 2017 pape
    • …
    corecore