326 research outputs found

    Computing the Face Lattice of a Polytope from its Vertex-Facet Incidences

    Get PDF
    We give an algorithm that constructs the Hasse diagram of the face lattice of a convex polytope P from its vertex-facet incidences in time O(min{n,m}*a*f), where n is the number of vertices, m is the number of facets, a is the number of vertex-facet incidences, and f is the total number of faces of P. This improves results of Fukuda and Rosta (1994), who described an algorithm for enumerating all faces of a d-polytope in O(min{n,m}*d*f^2) steps. For simple or simplicial d-polytopes our algorithm can be specialized to run in time O(d*a*f). Furthermore, applications of the algorithm to other atomic lattices are discussed, e.g., to face lattices of oriented matroids.Comment: 14 pages; to appear in: Comput. Geom.; the new version contains some minor extensions and corrections as well as a more detailed treatment of oriented matroid

    On the weak order of Coxeter groups

    Full text link
    This paper provides some evidence for conjectural relations between extensions of (right) weak order on Coxeter groups, closure operators on root systems, and Bruhat order. The conjecture focused upon here refines an earlier question as to whether the set of initial sections of reflection orders, ordered by inclusion, forms a complete lattice. Meet and join in weak order are described in terms of a suitable closure operator. Galois connections are defined from the power set of W to itself, under which maximal subgroups of certain groupoids correspond to certain complete meet subsemilattices of weak order. An analogue of weak order for standard parabolic subsets of any rank of the root system is defined, reducing to the usual weak order in rank zero, and having some analogous properties in rank one (and conjecturally in general).Comment: 37 pages, submitte

    Topological representations of matroid maps

    Full text link
    The Topological Representation Theorem for (oriented) matroids states that every (oriented) matroid can be realized as the intersection lattice of an arrangement of codimension one homotopy spheres on a homotopy sphere. In this paper, we use a construction of Engstr\"om to show that structure-preserving maps between matroids induce topological mappings between their representations; a result previously known only in the oriented case. Specifically, we show that weak maps induce continuous maps and that the process is a functor from the category of matroids with weak maps to the homotopy category of topological spaces. We also give a new and conceptual proof of a result regarding the Whitney numbers of the first kind of a matroid.Comment: Final version, 21 pages, 8 figures; Journal of Algebraic Combinatorics, 201

    Generalized Kneser coloring theorems with combinatorial proofs

    Full text link
    The Kneser conjecture (1955) was proved by Lov\'asz (1978) using the Borsuk-Ulam theorem; all subsequent proofs, extensions and generalizations also relied on Algebraic Topology results, namely the Borsuk-Ulam theorem and its extensions. Only in 2000, Matou\v{s}ek provided the first combinatorial proof of the Kneser conjecture. Here we provide a hypergraph coloring theorem, with a combinatorial proof, which has as special cases the Kneser conjecture as well as its extensions and generalization by (hyper)graph coloring theorems of Dol'nikov, Alon-Frankl-Lov\'asz, Sarkaria, and Kriz. We also give a combinatorial proof of Schrijver's theorem.Comment: 19 pages, 4 figure
    corecore