179 research outputs found

    The Booleanization of an inverse semigroup

    Full text link
    We prove that the forgetful functor from the category of Boolean inverse semigroups to inverse semigroups with zero has a left adjoint. This left adjoint is what we term the `Booleanization'. We establish the exact connection between the Booleanization of an inverse semigroup and Paterson's universal groupoid of the inverse semigroup and we explicitly compute the Booleanization of the polycyclic inverse monoid PnP_{n} and demonstrate its affiliation with the Cuntz-Toeplitz algebra.Comment: This is an updated version of the previous paper. Typos where found have been corrected and a new section added that shows how to construct the Booleanization directly from an arbitrary inverse semigroup with zero (without having to use its distributive completion

    Tarski monoids: Matui's spatial realization theorem

    Full text link
    We introduce a class of inverse monoids, called Tarski monoids, that can be regarded as non-commutative generalizations of the unique countable, atomless Boolean algebra. These inverse monoids are related to a class of etale topological groupoids under a non-commutative generalization of classical Stone duality and, significantly, they arise naturally in the theory of dynamical systems as developed by Matui. We are thereby able to reinterpret a theorem of Matui on a class of \'etale groupoids as an equivalent theorem about a class of Tarski monoids: two simple Tarski monoids are isomorphic if and only if their groups of units are isomorphic. The inverse monoids in question may also be viewed as countably infinite generalizations of finite symmetric inverse monoids. Their groups of units therefore generalize the finite symmetric groups and include amongst their number the classical Thompson groups.Comment: arXiv admin note: text overlap with arXiv:1407.147

    Entailment systems for stably locally compact locales

    Get PDF
    The category SCFrU of stably continuous frames and preframe ho-momorphisms (preserving ¯nite meets and directed joins) is dual to the Karoubi envelope of a category Ent whose objects are sets and whose morphisms X ! Y are upper closed relations between the ¯nite powersets FX and FY . Composition of these morphisms is the \cut composition" of Jung et al. that interfaces disjunction in the codomains with conjunctions in the domains, and thereby relates to their multi-lingual sequent calculus. Thus stably locally compact locales are represented by \entailment systems" (X; `) in which `, a generalization of entailment relations,is idempotent for cut composition. Some constructions on stably locally compact locales are represented in terms of entailment systems: products, duality and powerlocales. Relational converse provides Ent with an involution, and this gives a simple treatment of the duality of stably locally compact locales. If A and B are stably continuous frames, then the internal preframe hom A t B is isomorphic to e A ­ B where e A is the Hofmann-Lawson dual. For a stably locally compact locale X, the lower powerlocale of X is shown to be the dual of the upper powerlocale of the dual of X

    A non-commutative generalization of Stone duality

    Full text link
    We prove that the category of boolean inverse monoids is dually equivalent to the category of boolean groupoids. This generalizes the classical Stone duality between boolean algebras and boolean spaces. As an instance of this duality, we show that the boolean inverse monoid associated with the Cuntz groupoid is the strong orthogonal completion of the polycyclic (or Cuntz) monoid and so its group of units is a Thompson group

    Restriction categories III: colimits, partial limits, and extensivity

    Get PDF
    A restriction category is an abstract formulation for a category of partial maps, defined in terms of certain specified idempotents called the restriction idempotents. All categories of partial maps are restriction categories; conversely, a restriction category is a category of partial maps if and only if the restriction idempotents split. Restriction categories facilitate reasoning about partial maps as they have a purely algebraic formulation. In this paper we consider colimits and limits in restriction categories. As the notion of restriction category is not self-dual, we should not expect colimits and limits in restriction categories to behave in the same manner. The notion of colimit in the restriction context is quite straightforward, but limits are more delicate. The suitable notion of limit turns out to be a kind of lax limit, satisfying certain extra properties. Of particular interest is the behaviour of the coproduct both by itself and with respect to partial products. We explore various conditions under which the coproducts are ``extensive'' in the sense that the total category (of the related partial map category) becomes an extensive category. When partial limits are present, they become ordinary limits in the total category. Thus, when the coproducts are extensive we obtain as the total category a lextensive category. This provides, in particular, a description of the extensive completion of a distributive category.Comment: 39 page

    Sheaf representation of monoidal categories

    Get PDF
    Every small monoidal category with universal (finite) joins of central idempotents is monoidally equivalent to the category of global sections of a sheaf of (sub)local monoidal categories on a topological space. Every small stiff monoidal category monoidally embeds into such a category of global sections. These representation results are functorial and subsume the Lambek-Moerdijk-Awodey sheaf representation for toposes, the Stone representation of Boolean algebras, and the Takahashi representation of Hilbert modules as continuous fields of Hilbert spaces. Many properties of a monoidal category carry over to the stalks of its sheaf, including having a trace, having exponential objects, having dual objects, having limits of some shape, and the central idempotents forming a Boolean algebra.Comment: 39 page

    Introduction to inverse semigroups

    Full text link
    This is an account of the theory of inverse semigroups, assuming only that the reader knows the basics of semigroup theory.Comment: arXiv admin note: text overlap with arXiv:2006.0162

    A categorical foundation for structured reversible flowchart languages: Soundness and adequacy

    Full text link
    Structured reversible flowchart languages is a class of imperative reversible programming languages allowing for a simple diagrammatic representation of control flow built from a limited set of control flow structures. This class includes the reversible programming language Janus (without recursion), as well as more recently developed reversible programming languages such as R-CORE and R-WHILE. In the present paper, we develop a categorical foundation for this class of languages based on inverse categories with joins. We generalize the notion of extensivity of restriction categories to one that may be accommodated by inverse categories, and use the resulting decisions to give a reversible representation of predicates and assertions. This leads to a categorical semantics for structured reversible flowcharts, which we show to be computationally sound and adequate, as well as equationally fully abstract with respect to the operational semantics under certain conditions
    • …
    corecore