895 research outputs found

    Load Balancing Algorithms for Parallel Spatial Join on HPC Platforms

    Get PDF
    Geospatial datasets are growing in volume, complexity, and heterogeneity. For efficient execution of geospatial computations and analytics on large scale datasets, parallel processing is necessary. To exploit fine-grained parallel processing on large scale compute clusters, partitioning of skewed datasets in a load-balanced way is challenging. The workload in spatial join is data dependent and highly irregular. Moreover, wide variation in the size and density of geometries from one region of the map to another, further exacerbates the load imbalance. This dissertation focuses on spatial join operation used in Geographic Information Systems (GIS) and spatial databases, where the inputs are two layers of geospatial data, and the output is a combination of the two layers according to join predicate.This dissertation introduces a novel spatial data partitioning algorithm geared towards load balancing the parallel spatial join processing. Unlike existing partitioning techniques, the proposed partitioning algorithm divides the spatial join workload instead of partitioning the individual datasets separately to provide better load-balancing. This workload partitioning algorithm has been evaluated on a high-performance computing system using real-world datasets. An intermediate output-sensitive duplication avoidance technique is proposed that decreases the external memory space requirement for storing spatial join candidates across the partitions. GPU acceleration is used to further reduce the spatial partitioning runtime. For dynamic load balancing in spatial join, a novel framework for fine-grained work stealing is presented. This framework is efficient and NUMA-aware. Performance improvements are demonstrated on shared and distributed memory architectures using threads and message passing. Experimental results show effective mitigation of data skew. The framework supports a variety of spatial join predicates and spatial overlay using partitioned and un-partitioned datasets

    Learning a Partitioning Advisor with Deep Reinforcement Learning

    Full text link
    Commercial data analytics products such as Microsoft Azure SQL Data Warehouse or Amazon Redshift provide ready-to-use scale-out database solutions for OLAP-style workloads in the cloud. While the provisioning of a database cluster is usually fully automated by cloud providers, customers typically still have to make important design decisions which were traditionally made by the database administrator such as selecting the partitioning schemes. In this paper we introduce a learned partitioning advisor for analytical OLAP-style workloads based on Deep Reinforcement Learning (DRL). The main idea is that a DRL agent learns its decisions based on experience by monitoring the rewards for different workloads and partitioning schemes. We evaluate our learned partitioning advisor in an experimental evaluation with different databases schemata and workloads of varying complexity. In the evaluation, we show that our advisor is not only able to find partitionings that outperform existing approaches for automated partitioning design but that it also can easily adjust to different deployments. This is especially important in cloud setups where customers can easily migrate their cluster to a new set of (virtual) machines

    A scalable analysis framework for large-scale RDF data

    Get PDF
    With the growth of the Semantic Web, the availability of RDF datasets from multiple domains as Linked Data has taken the corpora of this web to a terabyte-scale, and challenges modern knowledge storage and discovery techniques. Research and engineering on RDF data management systems is a very active area with many standalone systems being introduced. However, as the size of RDF data increases, such single-machine approaches meet performance bottlenecks, in terms of both data loading and querying, due to the limited parallelism inherent to symmetric multi-threaded systems and the limited available system I/O and system memory. Although several approaches for distributed RDF data processing have been proposed, along with clustered versions of more traditional approaches, their techniques are limited by the trade-off they exploit between loading complexity and query efficiency in the presence of big RDF data. This thesis then, introduces a scalable analysis framework for processing large-scale RDF data, which focuses on various techniques to reduce inter-machine communication, computation and load-imbalancing so as to achieve fast data loading and querying on distributed infrastructures. The first part of this thesis focuses on the study of RDF store implementation and parallel hashing on big data processing. (1) A system-level investigation of RDF store implementation has been conducted on the basis of a comparative analysis of runtime characteristics of a representative set of RDF stores. The detailed time cost and system consumption is measured for data loading and querying so as to provide insight into different triple store implementation as well as an understanding of performance differences between different platforms. (2) A high-level structured parallel hashing approach over distributed memory is proposed and theoretically analyzed. The detailed performance of hashing implementations using different lock-free strategies has been characterized through extensive experiments, thereby allowing system developers to make a more informed choice for the implementation of their high-performance analytical data processing systems. The second part of this thesis proposes three main techniques for fast processing of large RDF data within the proposed framework. (1) A very efficient parallel dictionary encoding algorithm, to avoid unnecessary disk-space consumption and reduce computational complexity of query execution. The presented implementation has achieved notable speedups compared to the state-of-art method and also has achieved excellent scalability. (2) Several novel parallel join algorithms, to efficiently handle skew over large data during query processing. The approaches have achieved good load balancing and have been demonstrated to be faster than the state-of-art techniques in both theoretical and experimental comparisons. (3) A two-tier dynamic indexing approach for processing SPARQL queries has been devised which keeps loading times low and decreases or in some instances removes intermachine data movement for subsequent queries that contain the same graph patterns. The results demonstrate that this design can load data at least an order of magnitude faster than a clustered store operating in RAM while remaining within an interactive range for query processing and even outperforms current systems for various queries

    Robust and Skew-resistant Parallel Joins in Shared-Nothing Systems

    Get PDF
    The performance of joins in parallel database management systems is critical for data intensive operations such as querying. Since data skew is common in many applications, poorly engineered join operations result in load imbalance and performance bottlenecks. State-of-the-art methods designed to handle this problem offer significant improvements over naive implementations. However, performance could be further improved by removing the dependency on global skew knowledge and broadcasting. In this paper, we propose PRPQ (partial redistribution & partial query), an efficient and robust join algorithm for processing large-scale joins over distributed systems. We present the detailed implementation and a quantitative evaluation of our method. The experimental results demonstrate that the proposed PRPQ algorithm is indeed robust and scalable under a wide range of skew conditions. Specifically, compared to the state-of-art PRPD method, we achieve 16% - 167% performance improvement and 24% - 54% less network communication under different join workloads

    Engineering Aggregation Operators for Relational In-Memory Database Systems

    Get PDF
    In this thesis we study the design and implementation of Aggregation operators in the context of relational in-memory database systems. In particular, we identify and address the following challenges: cache-efficiency, CPU-friendliness, parallelism within and across processors, robust handling of skewed data, adaptive processing, processing with constrained memory, and integration with modern database architectures. Our resulting algorithm outperforms the state-of-the-art by up to 3.7x
    • …
    corecore