2,520 research outputs found

    Design and Implementation of a Distributed Middleware for Parallel Execution of Legacy Enterprise Applications

    Get PDF
    A typical enterprise uses a local area network of computers to perform its business. During the off-working hours, the computational capacities of these networked computers are underused or unused. In order to utilize this computational capacity an application has to be recoded to exploit concurrency inherent in a computation which is clearly not possible for legacy applications without any source code. This thesis presents the design an implementation of a distributed middleware which can automatically execute a legacy application on multiple networked computers by parallelizing it. This middleware runs multiple copies of the binary executable code in parallel on different hosts in the network. It wraps up the binary executable code of the legacy application in order to capture the kernel level data access system calls and perform them distributively over multiple computers in a safe and conflict free manner. The middleware also incorporates a dynamic scheduling technique to execute the target application in minimum time by scavenging the available CPU cycles of the hosts in the network. This dynamic scheduling also supports the CPU availability of the hosts to change over time and properly reschedule the replicas performing the computation to minimize the execution time. A prototype implementation of this middleware has been developed as a proof of concept of the design. This implementation has been evaluated with a few typical case studies and the test results confirm that the middleware works as expected

    Efficient Processing of k Nearest Neighbor Joins using MapReduce

    Full text link
    k nearest neighbor join (kNN join), designed to find k nearest neighbors from a dataset S for every object in another dataset R, is a primitive operation widely adopted by many data mining applications. As a combination of the k nearest neighbor query and the join operation, kNN join is an expensive operation. Given the increasing volume of data, it is difficult to perform a kNN join on a centralized machine efficiently. In this paper, we investigate how to perform kNN join using MapReduce which is a well-accepted framework for data-intensive applications over clusters of computers. In brief, the mappers cluster objects into groups; the reducers perform the kNN join on each group of objects separately. We design an effective mapping mechanism that exploits pruning rules for distance filtering, and hence reduces both the shuffling and computational costs. To reduce the shuffling cost, we propose two approximate algorithms to minimize the number of replicas. Extensive experiments on our in-house cluster demonstrate that our proposed methods are efficient, robust and scalable.Comment: VLDB201

    Symmetric Replication for Structured Peer-to-Peer Systems

    Get PDF
    Structured peer-to-peer systems rely on replication as a basic means to provide fault-tolerance in presence of high churn. Most select replicas using either multiple hash functions, successor-lists, or leaf-sets. We show that all three alternatives have limitations. We present and provide full algorithmic speci¯cation for a generic replication scheme called symmetric replication which only needs O(1) message for every join and leave operation to maintain any replication degree. The scheme is applicable to all existing structured peer-to-peer systems, and can be implemented on-top of any DHT. The scheme has been implemented in our DKS system, and is used to do load-balancing, end-to-end fault-tolerance, and to increase the security by using distributed voting. We outline an extension to the scheme, implemented in DKS, which adds routing proximity to reduce latencies. The scheme is particularly suitable for use with erasure codes, as it can be used to fetch a random subset of the replicas for decoding

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Atomic commitment in transactional DHTs

    Get PDF
    We investigate the problem of atomic commit in transactional database systems built on top of Distributed Hash Tables. DHTs provide a decentralized way to store and look up data. To solve the atomic commit problem we propose to use an adaption of Paxos commit as a non-blocking algorithm. We exploit the symmetric replication technique existing in the DKS DHT to determine which nodes are necessary to execute the commit algorithm. By doing so we achieve a lower number of communication rounds and a reduction of meta-data in contrast to traditional Three-Phase-Commit protocols. We also show how the proposed solution can cope with dynamism due to churn in DHTs. Our solution works correctly relying only on an inaccurate failure detection of node failure which is necessary for systems running over the Internet

    Extended Resource Specification Language Reference Manual for ARC versions 0.8 and above

    Get PDF
    Extended Resource Specification Language Reference Manual for ARC versions 0.8 and abov
    corecore