5,988 research outputs found

    SettleBot: A Negotiation Model for the Agent Based Commercial Grid

    Get PDF

    Parallel high-performance grid computing: Capabilities and opportunities of a novel demanding service and business class allowing highest resource efficiency

    Get PDF
    Especially in the life-science and the health-care sectors the huge IT requirements are imminent due to the large and complex systems to be analysed and simulated. Grid infrastructures play here a rapidly increasing role for research, diagnostics, and treatment, since they provide the necessary large-scale resources efficiently. Whereas grids were first used for huge number crunching of trivially parallelizable problems, increasingly parallel high-performance computing is required. Here, we show for the prime example of molecular dynamic simulations how the presence of large grid clusters including very fast network interconnects within grid infrastructures allows now parallel high-performance grid computing efficiently and thus combines the benefits of dedicated super-computing centres and grid infrastructures. The demands for this service class are the highest since the user group has very heterogeneous requirements: i) two to many thousands of CPUs, ii) different memory architectures, iii) huge storage capabilities, and iv) fast communication via network interconnects, are all needed in different combinations and must be considered in a highly dedicated manner to reach highest performance efficiency. Beyond, advanced and dedicated i) interaction with users, ii) the management of jobs, iii) accounting, and iv) billing, not only combines classic with parallel high-performance grid usage, but more importantly is also able to increase the efficiency of IT resource providers. Consequently, the mere "yes-we- can" becomes a huge opportunity like e.g. the life-science and health-care sectors as well as grid infrastructures by reaching higher level of resource efficiency

    Speeding up systems biology simulations of biochemical pathways using condor

    Get PDF
    This is the accepted version of the following article: Speeding up Systems Biology Simulations of Biochemical Pathways using Condor". Concurrency and Computation: Practice and Experience Volume 26, Issue 17, pages 2727–2742, 10 December 2014 which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/cpe.3161/abstractSystems biology is a scientific field that uses computational modelling to study biological and biochemical systems. The simulation and analysis of models of these systems typically explore behaviour over a wide range of parameter values; as such, they are usually characterised by the need for nontrivial amounts of computing power. Grid computing provides access to such computational resources. In previous research, we created the grid-enabled biochemical networks simulation environment to attempt to speed up system biology simulations over a grid (the UK National Grid Service and ScotGrid). Following on from this work, we have created the simulation modelling of the epidermal growth factor receptor microtubule-associated protein kinase pathway utility, a standalone simulation tool dedicated to the modelling and analysis of the epidermal growth factor receptor microtubule-associated protein kinase pathway. This builds on experiences from biochemical networks simulation environment by decoupling the simulation modelling elements from the Grid middleware. This new utility enables us to interface with different grid technologies. This paper therefore describes the new SIMAP utility and an empirical investigation of its performance when deployed over a desktop grid based on the high throughput computing middleware Condor. We present our results based on a case study with a model of the mammalian ErbB signalling pathway, a pathway strongly linked to cance
    • …
    corecore