352 research outputs found

    Metascheduling of HPC Jobs in Day-Ahead Electricity Markets

    Full text link
    High performance grid computing is a key enabler of large scale collaborative computational science. With the promise of exascale computing, high performance grid systems are expected to incur electricity bills that grow super-linearly over time. In order to achieve cost effectiveness in these systems, it is essential for the scheduling algorithms to exploit electricity price variations, both in space and time, that are prevalent in the dynamic electricity price markets. In this paper, we present a metascheduling algorithm to optimize the placement of jobs in a compute grid which consumes electricity from the day-ahead wholesale market. We formulate the scheduling problem as a Minimum Cost Maximum Flow problem and leverage queue waiting time and electricity price predictions to accurately estimate the cost of job execution at a system. Using trace based simulation with real and synthetic workload traces, and real electricity price data sets, we demonstrate our approach on two currently operational grids, XSEDE and NorduGrid. Our experimental setup collectively constitute more than 433K processors spread across 58 compute systems in 17 geographically distributed locations. Experiments show that our approach simultaneously optimizes the total electricity cost and the average response time of the grid, without being unfair to users of the local batch systems.Comment: Appears in IEEE Transactions on Parallel and Distributed System

    The effect of real workloads and stochastic workloads on the performance of allocation and scheduling algorithms in 2D mesh multicomputers

    Get PDF
    The performance of the existing non-contiguous processor allocation strategies has been traditionally carried out by means of simulation based on a stochastic workload model to generate a stream of incoming jobs. To validate the performance of the existing algorithms, there has been a need to evaluate the algorithms' performance based on a real workload trace. In this paper, we evaluate the performance of several well-known processor allocation and job scheduling strategies based on a real workload trace and compare the results against those obtained from using a stochastic workload. Our results reveal that the conclusions reached on the relative performance merits of the allocation strategies when a real workload trace is used are in general compatible with those obtained when a stochastic workload is used

    Extending Scojo-PECT by migration based on system-level checkpointing

    Get PDF
    In recent years, a significant amount of research has been done on job scheduling in high performance computing area. Parallel jobs have different running time and require a different number of processors, thus jobs need to be scheduled and packed to improve system utilization. Scojo-PECT is a job scheduler which provides service guarantees by using coarse-grain time sharing. However, Scojo-PECT does not provide process migration. We extend the Scojo-PECT by migrating parallel jobs based on system-level checkpointing. We investigate different cases in the Scojo-PECT scheduling algorithm where migration based on system-level checkpointing can be used to improve resource utilization and reduce job response time. Our experimental results show reduction of relative response times on medium jobs over the results of the original Scojo-PECT scheduler and the long jobs do not suffer any disadvantage

    A Queue Simulation Tool for a High Performance Scientific Computing Center

    Get PDF
    The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies

    Idle regulation in non-clairvoyant scheduling of parallel jobs

    Get PDF
    AbstractThe optimization of parallel applications is difficult to achieve by classical optimization techniques because of their diversity and the variety of actual parallel and distributed platforms and/or environments. Adaptive algorithmic schemes, capable of dynamically changing the allocation of jobs during the execution to optimize global system behavior, are the best alternatives for solving this problem. In this paper, we focus on non-clairvoyant scheduling of parallel jobs with known resource requirements but unknown running times, with emphasis on the regulation of idle periods in the context of general list policies. We consider a new family of scheduling strategies based on two phases which successively combine sequential and parallel execution of jobs. We generalize known worst-case performance bounds by considering two extra parameters, in addition to the number of processors and maximum processor requirements considered in the literature, namely, job parallelization penalty and idle regulation factor. Furthermore, we prove that under certain conditions of idle regulation, the performance guarantee of parallel job scheduling in space-sharing mode can be improved

    Backfilling with fairness and slack for parallel job scheduling

    Get PDF
    Parallel jobs have different runtimes and numbers of threads/processes. Thus, scheduling parallel jobs involves a packing problem. If jobs are packed as tightly as possible, utilization will be improved. Otherwise, some resources have to stay idle. The common solution to deal with idle resources is backfilling, which schedule smaller jobs submitted later to execute earlier as long as they do not postpone the first job or all the previous jobs in the waiting queue. Traditionally, backfilling uses first fit for idle resources, according to the submission order. However, in this case, better packing of jobs could be missed. Hence, we propose an algorithm which looks further ahead if significantly improving utilization. However at the same time, this could be unfair to some jobs ahead in the queue. So we use a delay factor as a constraint to limit unfairness. We propose a branch and bound algorithm which selects jobs for backfilling which keep utilization high, while trying to stay close to First-Come-First-Served (FCFS). We evaluate relative response time and utilization and compare to other backfilling approaches. The selection of jobs for backfilling to optimize for high utilization and low delay is implemented as an extension of the existing Scojo-PECT preemptive scheduler

    Supercomputer Emulation For Evaluating Scheduling Algorithms

    Get PDF
    Scheduling algorithms have a significant impact on the optimal utilization of HPC facilities, yet the vast majority of the research in this area is done using simulations. In working with simulations, a great deal of factors that affect a real scheduler, such as its scheduling processing time, communication latencies and the scheduler intrinsic implementation complexity are not considered. As a result, despite theoretical improvements reported in several articles, practically no new algorithms proposed have been implemented in real schedulers, with HPC facilities still using the basic first-come-first-served (FCFS) with Backfill policy scheduling algorithm. A better approach could be, therefore, the use of real schedulers in an emulation environment to evaluate new algorithms. This thesis investigates two related challenges in emulations: computational cost and faithfulness of the results to real scheduling environments. It finds that the sampling, shrinking and shuffling of a trace must be done carefully to keep the classical metrics invariant or linear variant in relation to size and times of the original workload. This is accomplished by the careful control of the submission period and the consideration of drifts in the submission period and trace duration. This methodology can help researchers to better evaluate their scheduling algorithms and help HPC administrators to optimize the parameters of production schedulers. In order to assess the proposed methodology, we evaluated both the FCFS with Backfill and Suspend/Resume scheduling algorithms. The results strongly suggest that Suspend/Resume leads to a better utilization of a supercomputer when high priorities are given to big jobs

    Fuzzy C-Mean And Genetic Algorithms Based Scheduling For Independent Jobs In Computational Grid

    Get PDF
    The concept of Grid computing is becoming the most important research area in the high performance computing. Under this concept, the jobs scheduling in Grid computing has more complicated problems to discover a diversity of available resources, select the appropriate applications and map to suitable resources. However, the major problem is the optimal job scheduling, which Grid nodes need to allocate the appropriate resources for each job. In this paper, we combine Fuzzy C-Mean and Genetic Algorithms which are popular algorithms, the Grid can be used for scheduling. Our model presents the method of the jobs classifications based mainly on Fuzzy C-Mean algorithm and mapping the jobs to the appropriate resources based mainly on Genetic algorithm. In the experiments, we used the workload historical information and put it into our simulator. We get the better result when compared to the traditional algorithms for scheduling policies. Finally, the paper also discusses approach of the jobs classifications and the optimization engine in Grid scheduling
    • …
    corecore