4,717 research outputs found

    Deterministic Jitter in Broadband Communication

    Get PDF
    The past decade has witnessed a drastic change in the design of high-speed serial links. While Silicon fabrication technology has produced smaller, faster transistors, transmission line interconnects between chips and through backplanes have not substantially improved and have a practical bandwidth of around 3GHz. As serial link speeds increase, new techniques must be introduced to overcome the bandwidth limitation and maintain digital signal integrity. This thesis studies timing issues pertaining to bandwidth-limited interconnects. Jitter is defined as the timing uncertainty at a threshold used to detect the digital signal. Reliable digital communication requires minimizing jitter. The analysis and modeling presented here focuses on two types of deterministic jitter. First, dispersion of the digital signal in a bandwidth-limited channel creates data-dependent jitter. Our analysis links data sequences to unique timing deviations through the channel response and is shown for general linear time-invariant systems. A Markov model is constructed to study the impact of jitter on the operation of the serial link and provide insight in circuit performance. Second, an analysis of bounded-uncorrected jitter resulting from crosstalk induced in parallel serial links is presented. Timing equalization is introduced to improve the signal integrity of high-speed links. The analysis of deterministic jitter leads to novel techniques for compensating the timing ambiguity in the received data. Data-dependent jitter equalization is discussed at both the receiver, where it complements the operation of clock and data recovery circuits, and as a phase pre-emphasis technique. Crosstalk-induced, bounded-uncorrected jitter can also be compensated. By detecting electromagnetic modes between neighboring serial links, a transmitter or receiver anticipates the timing deviation that has occurred along the transmission line. Finally, we discuss a new circuit technique for submillimeter integrated circuits. Demands of wireless communication and the high speed of Silicon Germanium transistors provide opportunities for unique radio architectures for submillimeter integrated circuits. Scalable, fully-integrated phased arrays control a radiated beam pattern electronically through tiling multiple chips. Coupled-oscillator arrays are used for the first time to subharmonically injection-lock across a chip or between multiple chips to provide phase coherence across an array.</p

    Design and implementation of a phase locked loop for high-speed serial links

    Get PDF
    Recent advances in the semiconductor industry and process technology scaling have increased the demand for fast, robust computing. The thirst for high-processing, low power ICs is ever increasing. This has pushed the demand for high data rates in wireless and wireline communication systems in the multi-Gbps range. With higher data rates, the I/O links need to scale proportionally. However, the I/O channel bandwidth has not scaled appropriately making it the biggest bottleneck in high-speed links. Parallel links have not been able to match this increasing system performance due to issues such as crosstalk, timing skew and packaging costs. Thus there is a need for high-speed serial links. For high-speed transmission of data, there arises a need for high-speed on chip clocking circuits making the use of Phase-Locked Loops (PLLs) imperative. This thesis includes an overview of high-speed links along with the need for PLLs. An in-depth understanding of PLL theory, loop dynamics and behavioral and transistor level simulation follows. Performance metrics such as phase noise, random jitter and deterministic jitter are discussed. Finally, this thesis concludes with an insight into All Digital Phase-Locked Loops (ADPLLs)

    Design of CMOS integrated phase-locked loops for multi-gigabits serial data links

    Get PDF
    High-speed serial data links are quickly gaining in popularity and replacing the conventional parallel data links in recent years when the data rate of communication exceeds one gigabits per second. Compared with parallel data links, serial data links are able to achieve higher data rate and longer transfer distance. This dissertation is focused on the design of CMOS integrated phase-locked loops (PLLs) and relevant building blocks used in multi-gigabits serial data link transceivers. Firstly, binary phase-locked loops (BPLLs, i.e., PLLs based on binary phase detectors) are modeled and analyzed. The steady-state behavior of BPLLs is derived with combined discrete-time and continuous-time analysis. The jitter performance characteristics of BPLLs are analyzed. Secondly, a 10 Gbps clock and data recovery (CDR) chip for SONET OC- 192, the mainstream standard for optical serial data links, is presented. The CDR is based on a novel referenceless dual-loop half-rate architecture. It includes a binary phase-locked loop based on a quad-level phase detector and a linear frequency-locked loop based on a linear frequency detector. The proposed architecture enables the CDR to achieve large locking range and small jitter generation at the same time. The prototype is implemented in 0.18 üm CMOS technology and consumes 250 mW under 1.8 V supply. The jitter generation is 0.5 ps-rms and 4.8 ps-pp. The jitter peaking and jitter tolerance performance exceeds the specifications defined by SONET OC-192 standard. Thirdly, a fully-differential divide-by-eight injection-locked frequency divider with low power dissipation is presented. The frequency divider consists of a four-stage ring of CML (current mode logic) latches. It has a maximum operating frequency of 18 GHz. The ratio of locking range over center frequency is up to 50%. The prototype chip is implemented in 0.18 üm CMOS technology and consumes 3.6 mW under 1.8 V supply. Lastly, the design and optimization techniques of fully differential charge pumps are discussed. Techniques are proposed to minimize the nonidealities associated with a fully differential charge pump, including differential mismatch, output current variation, low-speed glitches and high-speed glitches. The performance improvement brought by the techniques is verified with simulations of schematics designed in 0.35 üm CMOS technology

    Cancellation of crosstalk-induced jitter

    Get PDF
    A novel jitter equalization circuit is presented that addresses crosstalk-induced jitter in high-speed serial links. A simple model of electromagnetic coupling demonstrates the generation of crosstalk-induced jitter. The analysis highlights unique aspects of crosstalk-induced jitter that differ from far-end crosstalk. The model is used to predict the crosstalk-induced jitter in 2-PAM and 4-PAM, which is compared to measurement. Furthermore, the model suggests an equalizer that compensates for the data-induced electromagnetic coupling between adjacent links and is suitable for pre- or post-emphasis schemes. The circuits are implemented using 130-nm MOSFETs and operate at 5-10 Gb/s. The results demonstrate reduced deterministic jitter and lower bit-error rate (BER). At 10 Gb/s, the crosstalk-induced jitter equalizer opens the eye at 10^sup-12 BER from 17 to 45 ps and lowers the rms jitter from 8.7 to 6.3 ps

    A 90 nm CMOS 16 Gb/s Transceiver for Optical Interconnects

    Get PDF
    Interconnect architectures which leverage high-bandwidth optical channels offer a promising solution to address the increasing chip-to-chip I/O bandwidth demands. This paper describes a dense, high-speed, and low-power CMOS optical interconnect transceiver architecture. Vertical-cavity surface-emitting laser (VCSEL) data rate is extended for a given average current and corresponding reliability level with a four-tap current summing FIR transmitter. A low-voltage integrating and double-sampling optical receiver front-end provides adequate sensitivity in a power efficient manner by avoiding linear high-gain elements common in conventional transimpedance-amplifier (TIA) receivers. Clock recovery is performed with a dual-loop architecture which employs baud-rate phase detection and feedback interpolation to achieve reduced power consumption, while high-precision phase spacing is ensured at both the transmitter and receiver through adjustable delay clock buffers. A prototype chip fabricated in 1 V 90 nm CMOS achieves 16 Gb/s operation while consuming 129 mW and occupying 0.105 mm^2

    The Level-0 Muon Trigger for the LHCb Experiment

    Get PDF
    A very compact architecture has been developed for the first level Muon Trigger of the LHCb experiment that processes 40 millions of proton-proton collisions per second. For each collision, it receives 3.2 kBytes of data and it finds straight tracks within a 1.2 microseconds latency. The trigger implementation is massively parallel, pipelined and fully synchronous with the LHC clock. It relies on 248 high density Field Programable Gate arrays and on the massive use of multigigabit serial link transceivers embedded inside FPGAs.Comment: 33 pages, 16 figures, submitted to NIM

    Phase and amplitude pre-emphasis techniques for low-power serial links

    Get PDF
    A novel approach to equalization of high-speed serial links combines both amplitude pre-emphasis to correct for intersymbol interference and phase pre-emphasis to compensate for deterministic jitter, in particular, data-dependent jitter. Phase pre-emphasis augments the performance of low power transmitters in bandwidth-limited channels. The transmitter circuit is implemented in a 90-nm bulk CMOS process and reduces power consumption by pushing CMOS static logic to the output stage, a 4:1 output multiplexer. The received signal jitter over a cable is reduced from 16.15 ps to 10.29 ps with only phase pre-emphasis at the transmitter. The jitter is reduced by 3.6 ps over an FR-4 backplane interconnect. A transmitter without phase pre-emphasis consumes 18 mW of power at 6Gb/s and 600mVpp output swing, a power budget of 3mW/Gb/s, while a transmitter with phase pre-emphasis consumes 24mW, a budget of 4 mW/Gb/s

    An AER handshake-less modular infrastructure PCB with x8 2.5Gbps LVDS serial links

    Get PDF
    Nowadays spike-based brain processing emulation is taking off. Several EU and others worldwide projects are demonstrating this, like SpiNNaker, BrainScaleS, FACETS, or NeuroGrid. The larger the brain process emulation on silicon is, the higher the communication performance of the hosting platforms has to be. Many times the bottleneck of these system implementations is not on the performance inside a chip or a board, but in the communication between boards. This paper describes a novel modular Address-Event-Representation (AER) FPGA-based (Spartan6) infrastructure PCB (the AER-Node board) with 2.5Gbps LVDS high speed serial links over SATA cables that offers a peak performance of 32-bit 62.5Meps (Mega events per second) on board-to-board communications. The board allows back compatibility with parallel AER devices supporting up to x2 28-bit parallel data with asynchronous handshake. These boards also allow modular expansion functionality through several daughter boards. The paper is focused on describing in detail the LVDS serial interface and presenting its performance.Ministerio de Ciencia e Innovación TEC2009-10639-C04-02/01Ministerio de Economía y Competitividad TEC2012-37868-C04-02/01Junta de Andalucía TIC-6091Ministerio de Economía y Competitividad PRI-PIMCHI-2011-076

    Compact Frontend-Electronics and Bidirectional 3.3 Gbps Optical Datalink for Fast Proportional Chamber Readout

    Get PDF
    The 9600 channels of the multi-wire proportional chamber of the H1 experiment at HERA have to be read out within 96 ns and made available to the trigger system. The tight spatial conditions at the rear end flange require a compact bidirectional readout electronics with minimal power consumption and dead material. A solution using 40 identical optical link modules, each transferring the trigger information with a physical rate of 4 x 832 Mbps via optical fibers, has been developed and commisioned. The analog pulses from the chamber can be monitored and the synchronization to the global HERA clock signal is ensured.Comment: 13 pages, 10 figure
    corecore