4,327 research outputs found

    Cancellation of crosstalk-induced jitter

    Get PDF
    A novel jitter equalization circuit is presented that addresses crosstalk-induced jitter in high-speed serial links. A simple model of electromagnetic coupling demonstrates the generation of crosstalk-induced jitter. The analysis highlights unique aspects of crosstalk-induced jitter that differ from far-end crosstalk. The model is used to predict the crosstalk-induced jitter in 2-PAM and 4-PAM, which is compared to measurement. Furthermore, the model suggests an equalizer that compensates for the data-induced electromagnetic coupling between adjacent links and is suitable for pre- or post-emphasis schemes. The circuits are implemented using 130-nm MOSFETs and operate at 5-10 Gb/s. The results demonstrate reduced deterministic jitter and lower bit-error rate (BER). At 10 Gb/s, the crosstalk-induced jitter equalizer opens the eye at 10^sup-12 BER from 17 to 45 ps and lowers the rms jitter from 8.7 to 6.3 ps

    The Level-0 Muon Trigger for the LHCb Experiment

    Get PDF
    A very compact architecture has been developed for the first level Muon Trigger of the LHCb experiment that processes 40 millions of proton-proton collisions per second. For each collision, it receives 3.2 kBytes of data and it finds straight tracks within a 1.2 microseconds latency. The trigger implementation is massively parallel, pipelined and fully synchronous with the LHC clock. It relies on 248 high density Field Programable Gate arrays and on the massive use of multigigabit serial link transceivers embedded inside FPGAs.Comment: 33 pages, 16 figures, submitted to NIM

    Opportunities for optics in integrated circuits applications

    Get PDF
    Optics potentially addresses two key problems in electronic chips and systems: interconnects and timing. Short optical pulses (e.g., picoseconds or shorter) offer particularly precise timing. Results are shown for optical and electrical four-phase clocking, with <1 ps rms jitter for the optical case

    Compact Frontend-Electronics and Bidirectional 3.3 Gbps Optical Datalink for Fast Proportional Chamber Readout

    Get PDF
    The 9600 channels of the multi-wire proportional chamber of the H1 experiment at HERA have to be read out within 96 ns and made available to the trigger system. The tight spatial conditions at the rear end flange require a compact bidirectional readout electronics with minimal power consumption and dead material. A solution using 40 identical optical link modules, each transferring the trigger information with a physical rate of 4 x 832 Mbps via optical fibers, has been developed and commisioned. The analog pulses from the chamber can be monitored and the synchronization to the global HERA clock signal is ensured.Comment: 13 pages, 10 figure

    An exploration of synchronization solutions for parallel short-range optical interconnect in mesochronous systems

    Get PDF
    As a result of the increasing complexity of electronic chips, the bandwidths required for inter- and intra-chip communication are rapidly increasing. As optoelectronics provides high=bandwidth and high-density interconnection it is considered as a candidate for short-range interconnection. For such interconnections, situated at a low level in the systems hierarchy, the interconnect latency is extremely critical for the systems performance. This paper describes some methods for mesochronous synchronization, needed for such interconnections. It will be shown that it can be beneficial to use an additional optical link to transfer a synchronization signal. Such a reference signal can be used efficiently for phase detection, provided that the data skew is sufficiently small, and result in a decrease of the cost-per-link

    Fast jitter tolerance testing for high-speed serial links in post-silicon validation

    Get PDF
    Post-silicon electrical validation of high-speed input/output (HSIO) links is a critical process for product qualification schedules of high-performance computer platforms under current aggressive time-to-market (TTM) commitments. Improvements in signaling methods, circuits, and process technologies have allowed HSIO data rates to scale well beyond 10 Gb/s. Noise and EM effects can create multiple signal integrity problems, which are aggravated by continuously faster bus technologies. The goal of post-silicon validation for HSIO links is to ensure design robustness of both receiver (Rx) and transmitter (Tx) circuitry in real system environments. One of the most common ways to evaluate the performance of a HSIO link is to characterize the Rx jitter tolerance (JTOL) performance by measuring the bit error rate (BER) of the link under worst stressing conditions. However, JTOL testing is extremely time-consuming when executed at specification BER considering manufacturing process, voltage, and temperature (PVT) test coverage. In order to significantly accelerate this process, we propose a novel approach for JTOL testing based on an efficient direct search optimization methodology. Our approach exploits the fast execution of a modified golden section search with a high BER, while overcoming the lack of correlation between different BERs by performing a downward linear search at the actual target BER until no errors are found. Our proposed methodology is validated in a realistic industrial server post-silicon validation platform for three different computer HSIO links: SATA, USB3, and PCIe3.ITESO, A.C

    In-system Jitter Measurement Based on Blind Oversampling Data Recovery

    Get PDF
    The paper describes a novel method for simple estimation of jitter contained in a received digital signal. The main objective of our research was to enable a non-invasive measurement of data link properties during a regular data transmission. To evaluate the signal quality we estimate amount of jitter contained in the received signal by utilizing internal signals of a data recovery circuit. The method is a pure digital algorithm suitable for implementation in any digital integrated circuit (ASIC or FPGA). It is based on a blind-oversampling data recovery circuit which is used in some receivers instead of a traditional PLL-based clock and data recovery (CDR) circuit. Combination of the described jitter measurement block and the data recovery block forms a very efficient input part of the digital receiver. In such configuration it is able to simultaneously perform both data communication (data recovery) and signal quality estimation (jitter measurement). The jitter measurement portion of the receiver requires no special connection of the received data signal. Thus the measured signal is not influenced by the measurement circuitry at all. To verify the method we performed a measurement on a laboratory free-space optics link. Results of the measurement are satisfactory and can be used for on-line channel analysis
    • …
    corecore