2,136 research outputs found

    Information Storage and Retrieval for Probe Storage using Optical Diffraction Patterns

    Get PDF
    A novel method for fast information retrieval from a probe storage device is considered. It is shown that information can be stored and retrieved using the optical diffraction patterns obtained by the illumination of a large array of cantilevers by a monochromatic light source. In thermo-mechanical probe storage, the information is stored as a sequence of indentations on the polymer medium. To retrieve the information, the array of probes is actuated by applying a bending force to the cantilevers. Probes positioned over indentations experience deflection by the depth of the indentation, probes over the flat media remain un-deflected. Thus the array of actuated probes can be viewed as an irregular optical grating, which creates a data-dependent diffraction pattern when illuminated by laser light. We develop a low complexity modulation scheme, which allows the extraction of information stored in the pattern of indentations on the media from Fourier coefficients of the intensity of the diffraction pattern. We then derive a low-complexity maximum likelihood sequence detection algorithm for retrieving the user information from the Fourier coefficients. The derivation of both the modulation and the detection schemes is based on the Fraunhofer formula for data-dependent diffraction patterns. We show that for as long as the Fresnel number F<0.1, the optimal channel detector derived from Fraunhofer diffraction theory does not suffer any significant performance degradation.Comment: 14 pages, 11 figures. Version 2: minor misprints corrected, experimental section expande

    Spatial time domain reflectometry for monitoring transient soil moisture profiles

    Get PDF

    Pulse-stream binary stochastic hardware for neural computation the Helmholtz Machine

    Get PDF

    Stacking of IGBT devices for fast high-voltage high-current applications

    Get PDF
    The development of solid-state switches for pulsed power applications has been of considerable interest since high-power semiconductor devices became available. However, the use of solid-state devices in the pulsed power environment has usually been restricted by device limitations in either their voltage/current ratings or their switching speed. The stacking of fast medium-voltage devices, such as IGBTs, to improve the voltage rating, makes solid-state switches a potential substitute for conventional switches such as hard glass tubes, thyratrons and spark gaps. Previous studies into stacking IGBTs have been concerned with specific devices, designed or modified particularly for a specific application. The present study is concerned with stacking fast and commercially available IGBTs and their application to the generation of pulsed electric field and the switching of a high intensity Xenon flashlamp. The aim of the first section of the present study was to investigate different solid-state switching devices with a stacking capability and this led to the choice of the Insulated Gate Bipolar Transistor (IGBT). It was found that the collector-emitter voltage decreases in two stages in most of the available IGBTs. Experiments and simulation showed that a reason for this behaviour could be fast variations in device parasitic parameters particularly gate-collector capacitance. Choosing the proper IGBT, as well as dealing with problems such as unbalanced voltage and current sharing, are important aspects of stacking and these were reported in this study. Dynamic and steady state voltage imbalances caused by gate driver delay was controlled using an array of synchronised pulses, isolated with magnetic and optical coupling. The design procedure for pulse transformers, optical modules, the drive circuits required to minimise possible jitter and time delays, and over-voltage protection of IGBT modules are also important aspects of stacking, and were reported in this study. The second purpose of this study was to investigate the switching performance of both magnetically coupled and optically coupled stacks, in pulse power applications such as Pulse Electric Field (PEF) inactivation of microorganisms and UV light inactivation of food-related pathogenic bacteria. The stack, consisting of 50 1.2 kV IGBTs with the voltage and current capabilities of 10 kV, 400 A, was incorporated into a coaxial cable Blumlein type pulse - generator and its performance was successfully tested with both magnetic and optical coupling. As a second application of the switch, a fully integrated solid-state Marx generator was designed and assembled to drive a UV flashlamp for the purpose of microbiological inactivation. The generator has an output voltage rating of 3 kV and a peak current rating of 2 kA, although the modular approach taken allows for a number of voltage and current ratings to be achieved. The performance of the switch was successfully tested over a period of more than 10⁶ pulses when it was applied to pulse a xenon flashlamp.The development of solid-state switches for pulsed power applications has been of considerable interest since high-power semiconductor devices became available. However, the use of solid-state devices in the pulsed power environment has usually been restricted by device limitations in either their voltage/current ratings or their switching speed. The stacking of fast medium-voltage devices, such as IGBTs, to improve the voltage rating, makes solid-state switches a potential substitute for conventional switches such as hard glass tubes, thyratrons and spark gaps. Previous studies into stacking IGBTs have been concerned with specific devices, designed or modified particularly for a specific application. The present study is concerned with stacking fast and commercially available IGBTs and their application to the generation of pulsed electric field and the switching of a high intensity Xenon flashlamp. The aim of the first section of the present study was to investigate different solid-state switching devices with a stacking capability and this led to the choice of the Insulated Gate Bipolar Transistor (IGBT). It was found that the collector-emitter voltage decreases in two stages in most of the available IGBTs. Experiments and simulation showed that a reason for this behaviour could be fast variations in device parasitic parameters particularly gate-collector capacitance. Choosing the proper IGBT, as well as dealing with problems such as unbalanced voltage and current sharing, are important aspects of stacking and these were reported in this study. Dynamic and steady state voltage imbalances caused by gate driver delay was controlled using an array of synchronised pulses, isolated with magnetic and optical coupling. The design procedure for pulse transformers, optical modules, the drive circuits required to minimise possible jitter and time delays, and over-voltage protection of IGBT modules are also important aspects of stacking, and were reported in this study. The second purpose of this study was to investigate the switching performance of both magnetically coupled and optically coupled stacks, in pulse power applications such as Pulse Electric Field (PEF) inactivation of microorganisms and UV light inactivation of food-related pathogenic bacteria. The stack, consisting of 50 1.2 kV IGBTs with the voltage and current capabilities of 10 kV, 400 A, was incorporated into a coaxial cable Blumlein type pulse - generator and its performance was successfully tested with both magnetic and optical coupling. As a second application of the switch, a fully integrated solid-state Marx generator was designed and assembled to drive a UV flashlamp for the purpose of microbiological inactivation. The generator has an output voltage rating of 3 kV and a peak current rating of 2 kA, although the modular approach taken allows for a number of voltage and current ratings to be achieved. The performance of the switch was successfully tested over a period of more than 10⁶ pulses when it was applied to pulse a xenon flashlamp

    Nd:YAG development for spaceborne laser ranging system

    Get PDF
    The results of the development of a unique modelocked laser device to be utilized in future NASA space-based, ultraprecision laser ranger systems are summarized. The engineering breadboard constructed proved the feasibility of the pump-pulsed, actively modelocked, PTM Q-switched Nd:YAG laser concept for the generation of subnanosecond pulses suitable for ultra-precision ranging. The laser breadboard also included a double-pass Nd:YAG amplifier and provision for a Type II KD*P frequency doubler. The specific technical accomplishment was the generation of single 150 psec, 20-mJ pulses at 10 pps at a wavelength of 1.064 micrometers with 25 dB suppression of pre-and post-pulses

    Development of a Full-Field Time-of-Flight Range Imaging System

    Get PDF
    A full-field, time-of-flight, image ranging system or 3D camera has been developed from a proof-of-principle to a working prototype stage, capable of determining the intensity and range for every pixel in a scene. The system can be adapted to the requirements of various applications, producing high precision range measurements with sub-millimetre resolution, or high speed measurements at video frame rates. Parallel data acquisition at each pixel provides high spatial resolution independent of the operating speed. The range imaging system uses a heterodyne technique to indirectly measure time of flight. Laser diodes with highly diverging beams are intensity modulated at radio frequencies and used to illuminate the scene. Reflected light is focused on to an image intensifier used as a high speed optical shutter, which is modulated at a slightly different frequency to that of the laser source. The output from the shutter is a low frequency beat signal, which is sampled by a digital video camera. Optical propagation delay is encoded into the phase of the beat signal, hence from a captured time variant intensity sequence, the beat signal phase can be measured to determine range for every pixel in the scene. A direct digital synthesiser (DDS) is designed and constructed, capable of generating up to three outputs at frequencies beyond 100 MHz with the relative frequency stability in excess of nine orders of magnitude required to control the laser and shutter modulation. Driver circuits were also designed to modulate the image intensifier photocathode at 50 Vpp, and four laser diodes with a combined power output of 320 mW, both over a frequency range of 10-100 MHz. The DDS, laser, and image intensifier response are characterised. A unique method of measuring the image intensifier optical modulation response is developed, requiring the construction of a pico-second pulsed laser source. This characterisation revealed deficiencies in the measured responses, which were mitigated through hardware modifications where possible. The effects of remaining imperfections, such as modulation waveform harmonics and image intensifier irising, can be calibrated and removed from the range measurements during software processing using the characterisation data. Finally, a digital method of generating the high frequency modulation signals using a FPGA to replace the analogue DDS is developed, providing a highly integrated solution, reducing the complexity, and enhancing flexibility. In addition, a novel modulation coding technique is developed to remove the undesirable influence of waveform harmonics from the range measurement without extending the acquisition time. When combined with a proposed modification to the laser illumination source, the digital system can enhance range measurement precision and linearity. From this work, a flexible full-field image ranging system is successfully realised. The system is demonstrated operating in a high precision mode with sub-millimetre depth resolution, and also in a high speed mode operating at video update rates (25 fps), in both cases providing high (512 512) spatial resolution over distances of several metres

    Development of the SERT I spacecraft Summary report

    Get PDF
    Spacecraft systems design, dynamics, ground support equipment, testing, and reliability for SERT program for ion beam neutralization in ion propulsion engin

    Technical Design Report for the PANDA Micro Vertex Detector

    Get PDF
    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined
    corecore