1 research outputs found

    Design of Low-Power NRZ/PAM-4 Wireline Transmitters

    Get PDF
    Rapid growing demand for instant multimedia access in a myriad of digital devices has pushed the need for higher bandwidth in modern communication hardwares ranging from short-reach (SR) memory/storage interfaces to long-reach (LR) data center Ethernets. At the same time, comprehensive design optimization of link system that meets the energy-efficiency is required for mobile computing and low operational cost at datacenters. This doctoral study consists of design of two low-swing wireline transmitters featuring a low-power clock distribution and 2-tap equalization in energy-efficient manners up to 20-Gb/s operation. In spite of the reduced signaling power in the voltage-mode (VM) transmit driver, the presence of the segment selection logic still diminishes the power saving benefit. The first work presents a scalable VM transmitter which offers low static power dissipation and adopts an impedance-modulated 2-tap equalizer with analog tap control, thereby obviating driver segmentation and reducing pre-driver complexity and dynamic power. Per-channel quadrature clock generation with injection-locked oscillators (ILO) allows the generation of rail-to-rail quadrature clocks. Energy efficiency is further improved with capacitively driven low-swing global clock distribution and supply scaling at lower data rates, while output eye quality is maintained at low voltages with automatic phase calibration of the local ILO-generated quarter-rate clocks. A prototype fabricated in a general purpose 65 nm CMOS process includes a 2 mm global clock distribution network and two transmitters that support an output swing range of 100-300mV with up to 12-dB of equalization. The transmitters achieve 8-16 Gb/s operation at 0.65-1.05 pJ/b energy efficiency. The second work involves a dual-mode NRZ/PAM-4 differential low-swing voltage-mode (VM) transmitter. The pulse-selected output multiplexing allows reduction of power supply and deterministic jitter caused by large on-chip parasitic inherent in the transmission-gate-based multiplexers in the earlier work. Analog impedance control replica circuits running in the background produce gate-biasing voltages that control the peaking ratio for 2-tap feed-forward equalization and PAM-4 symbol levels for high-linearity. This analog control also allows for efficient generation of the middle levels in PAM-4 operation with good linearity quantified by level separation mismatch ratio of 95%. In NRZ mode, 2-tap feedforward equalization is configurable in high-performance controlled-impedance or energy-efficient impedance-modulated settings to provide performance scalability. Analytic design consideration on dynamic power, data-rate, mismatch, and output swing brings optimal performance metric on the given technology node. The proof-of-concept prototype is verified on silicon with 65 nm CMOS process with improved performance in speed and energy-efficiency owing to double-stack NMOS transistors in the output stage. The transmitter consumes as low as 29.6mW in 20-Gb/s NRZ and 25.5mW in the 28-Gb/s PAM-4 operations
    corecore