8,040 research outputs found

    Interim Design Report

    Get PDF
    The International Design Study for the Neutrino Factory (the IDS-NF) was established by the community at the ninth "International Workshop on Neutrino Factories, super-beams, and beta- beams" which was held in Okayama in August 2007. The IDS-NF mandate is to deliver the Reference Design Report (RDR) for the facility on the timescale of 2012/13. In addition, the mandate for the study [3] requires an Interim Design Report to be delivered midway through the project as a step on the way to the RDR. This document, the IDR, has two functions: it marks the point in the IDS-NF at which the emphasis turns to the engineering studies required to deliver the RDR and it documents baseline concepts for the accelerator complex, the neutrino detectors, and the instrumentation systems. The IDS-NF is, in essence, a site-independent study. Example sites, CERN, FNAL, and RAL, have been identified to allow site-specific issues to be addressed in the cost analysis that will be presented in the RDR. The choice of example sites should not be interpreted as implying a preferred choice of site for the facility

    Study, definition and analysis of pilot/system performance measurements for planetary entry experiments

    Get PDF
    Definition analysis for experimental prediction of pilot performance during planetary entr

    Large Scale Flows from Orion-South

    Get PDF
    Multiple optical outflows are known to exist in the vicinity of the active star formation region called Orion-South (Orion-S). We have mapped the velocity of low ionization features in the brightest part of the Orion Nebula, including Orion-S, and imaged the entire nebula with the Hubble Space Telescope. These new data, combined with recent high resolution radio maps of outflows from the Orion-S region, allow us to trace the origin of the optical outflows. It is confirmed that HH 625 arises from the blueshifted lobe of the CO outflow from 136-359 in Orion-S while it is likely that HH 507 arises from the blueshifted lobe of the SiO outflow from the nearby source 135-356. It is likely that redshifted lobes are deflected within the photon dominated region behind the optical nebula. This leads to a possible identification of a new large shock to the southwest from Orion-S as being driven by the redshifted CO outflow arising from 137-408. The distant object HH 400 is seen to have two even further components and these all are probably linked to either HH 203, HH 204, or HH 528. Distant shocks on the west side of the nebula may be related to HH 269. The sources of multiple bright blueshifted Herbig-Haro objects (HH 202, HH 203, HH 204, HH 269, HH 528) remain unidentified, in spite of earlier claimed identifications. Some of this lack of identification may arise from the fact that deflection in radial velocity can also produce a change in direction in the plane of the sky. The best way to resolve this open question is through improved tangential velocities of low ionization features arising where the outflows first break out into the ionized nebula.Comment: Astronomical Journal, in press. Some figures are shown at reduced resolution. A full-resolution version is available at http://ifront.org/wiki/Orion_South_Outflows_Pape

    Studies of the CMS Level 1 Trigger and Tracker Upgrade

    Get PDF

    Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars

    Get PDF
    The Mars Orbiter Laser Altimeter (MOLA), an instrument on the Mars Global Surveyor spacecraft, has measured the topography, surface roughness, and 1.064-μm reflectivity of Mars and the heights of volatile and dust clouds. This paper discusses the function of the MOLA instrument and the acquisition, processing, and correction of observations to produce global data sets. The altimeter measurements have been converted to both gridded and spherical harmonic models for the topography and shape of Mars that have vertical and radial accuracies of ~1 m with respect to the planet's center of mass. The current global topographic grid has a resolution of 1/64° in latitude × 1/32° in longitude (1 × 2 km^2 at the equator). Reconstruction of the locations of incident laser pulses on the Martian surface appears to be at the 100-m spatial accuracy level and results in 2 orders of magnitude improvement in the global geodetic grid of Mars. Global maps of optical pulse width indicative of 100-m-scale surface roughness and 1.064-μm reflectivity with an accuracy of 5% have also been obtained

    NASA Tech Briefs, January 2012

    Get PDF
    Contents of this issue are: (1) Energy-Based Tetrahedron Sensor for High-Temperature, High-Pressure Environments (2) Handheld Universal Diagnostic Sensor (3) Large-Area Vacuum Ultraviolet Sensors (4) Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures (5) Health-Enabled Smart Sensor Fusion Technology (6) Extended-Range Passive RFID and Sensor Tags (7) Hybrid Collaborative Learning for Classification and Clustering in Sensor Networks (8) Self-Healing, Inflatable, Rigidizable Shelter (9) Improvements in Cold-Plate Fabrication (10) Technique for Radiometer and Antenna Array Calibration - TRAAC (11) Real-Time Cognitive Computing Architecture for Data Fusion in a Dynamic Environment (12) Programmable Digital Controller (13) Use of CCSDS Packets Over SpaceWire to Control Hardware (14) Key Decision Record Creation and Approval Module (15) Enhanced Graphics for Extended Scale Range (16) Debris Examination Using Ballistic and Radar Integrated Software (17) Data Distribution System (DDS) and Solar Dynamic Observatory Ground Station (SDOGS) (18) Integration Manager (19) Eclipse-Free-Time Assessment Tool for IRIS (20) Automated and Manual Rocket Crater Measurement Software (21) MATLAB Stability and Control Toolbox Trim and Static Stability Module (22) Patched Conic Trajectory Code (23) Ring Image Analyzer (24) SureTrak Probability of Impact Display (25) Implementation of a Non-Metallic Barrier in an Electric Motor (26) Multi-Mission Radioisotope Thermoelectric Generator Heat Exchangers for the Mars Science Laboratory Rover (27) Uniform Dust Distributor for Testing Radiative Emittance of Dust-Coated Surfaces (28) MicroProbe Small Unmanned Aerial System (29) Highly Stable and Active Catalyst for Sabatier Reactions (30) Better Proton-Conducting Polymers for Fuel-Cell Membranes (31) CCD Camera Lens Interface for Real-Time Theodolite Alignment (32) Peregrine 100-km Sounding Rocket Project (33) SOFIA Closed- and Open-Door Aerodynamic Analyses (34) Sonic Thermometer for High-Altitude Balloons (35) Near-Infrared Photon-Counting Camera for High-Sensitivity Observations (36) Integrated Optics Achromatic Nuller for Stellar Interferometry (37) High-Speed Digital Interferometry (38) Ultra-Miniature Lidar Scanner for Launch Range Data Collection (39) Shape and Color Features for Object Recognition Search (40) Explanation Capabilities for Behavior-Based Robot Control (41) A DNA-Inspired Encryption Methodology for Secure, Mobile Ad Hoc Networks (42) Quality Control Method for a Micro-Nano-Channel Microfabricated Device (43) Corner-Cube Retroreflector Instrument for Advanced Lunar Laser Ranging (44) Electrospray Collection of Lunar Dust (45) Fabrication of a Kilopixel Array of Superconducting Microcalorimeters with Microstripline Wiring Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators (46) Coherent Detector for Near-Angle Scattering and Polarization Characterization of Telescope Mirror Coating

    The International Linear Collider

    Full text link
    In this article, we describe the key features of the recently completed technical design for the International Linear Collider (ILC), a 200-500 GeV linear electron-positron collider (expandable to 1 TeV) that is based on 1.3 GHz superconducting radio-frequency (SCRF) technology. The machine parameters and detector characteristics have been chosen to complement the Large Hadron Collider physics, including the discovery of the Higgs boson, and to further exploit this new particle physics energy frontier with a precision instrument. The linear collider design is the result of nearly twenty years of R&D, resulting in a mature conceptual design for the ILC project that reflects an international consensus. We summarize the physics goals and capability of the ILC, the enabling R&D and resulting accelerator design, as well as the concepts for two complementary detectors. The ILC is technically ready to be proposed and built as a next generation lepton collider, perhaps to be built in stages beginning as a Higgs factory.Comment: 41 page
    • …
    corecore