67 research outputs found

    Adaptivität und semantische Interoperabilität von Manufacturing Execution Systemen (MES)

    Get PDF

    Adaptivität und semantische Interoperabilität von Manufacturing Execution Systemen (MES)

    Get PDF
    MES (Manufacturing Execution Systems) are situated between automation and management level and are affected from changes of the production. Therefore their adaptivity within the lifecycle of production plants is mission critical. Furthermore MES act as data and information hub. This means that they have to work together with other systems in an efficient and seamless way. MES must be interoperable and must have semantics under control. The present publication faces both aspects

    Konsistenzerhaltung von Feature-Modellen durch externe Sichten

    Get PDF
    Bei der Produktlinienentwicklung werden Software-Produktlinien(SPLs) meistens Featureorientiert strukturiert und organisiert. Um die gemeinsamen und variablen Merkmale der Produkte einer Produktlinie darzustellen, können Feature-Modelle verwendet werden. Ein Software-Werkzeug zum Erstellen und Editieren von Feature-Modellen ist FeatureIDE, welche die Zustände der Feature-Modelle als Dateien der Extensible Markup Language (XML) persistiert. Bei der Entwicklung von Software-Systemen existieren allerdings mehrere unterschiedliche Artefakte. Diese können sich Informationen mit den Feature-Modellen teilen. Um diese Artefakte und Modelle gemeinsam automatisch evolvieren zu können, werden Konsistenzerhaltungsansätze benötigt. Solche Ansätze sind jedoch nicht mit den persistierten XML-Dateien kompatibel. In dieser Arbeit implementieren wir eine bidirektionale Modell-zu-Text-Transformation, welche die als XML-Dateien persistierten Zustände der FeatureIDE-Modelle in geeignete Modellrepräsentationen überführt, um daraus feingranulare Änderungssequenzen abzuleiten. Diese können zur deltabasierten Konsistenzerhaltung verwendet werden. Für die Modellrepräsentation verwenden wir ein bestehendes Metamodell für Variabilität. Zur Ableitung der Änderungssequenzen wird ein existierendes Konsistenzerhaltungsframework eingesetzt. Wir validieren die Korrektheit der Transformation mithilfe von Round-Trip-Tests. Dabei zeigen wir, dass die in dieser Arbeit implementierte Transformation alle geteilten Informationen zwischen FeatureIDE und dem Variabilitäts-Metamodell korrekt transformiert. Zudem können mithilfe der in dieser Arbeit implementierten Transformation und mit dem verwendeten Konsistenzerhaltungsframework zu 94,44% korrekte feingranulare Änderungssequenzen aus den als XML-Datei persistierten Zuständen der FeatureIDE-Modelle abgeleitet werden

    Jahresbericht 2010 / Institut für Angewandte Informatik (KIT Scientific Reports ; 7601)

    Get PDF
    Das Institut für Angewandte Informatik (IAI) ist eine Organisationseinheit des Karlsruher Instituts für Technologie (KIT), Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft. Das Institut betreibt Forschung und Entwicklung auf dem Gebiet innovativer, anwendungsorientierter Informations-, Automatisierungs- und Systemtechnik

    Das FPGA-Entwicklungssystem CHDL

    Get PDF
    In dieser Arbeit wurde das Konzept der C++-basierten Hardwarebeschreibung für Field Programmable Gate Arrays (FPGAs) weiterentwickelt und optimiert. Ergebnis ist ein homogenes System, das eine deutlich verbesserte Unterstützung für FPGA-Koprozessoren bietet als bisher verfügbare Werkzeuge: Das FPGA-Entwicklungssystem CHDL. CHDL integriert mehrere parallel einsetzbare Beschreibungsebenen von der detaillierten strukturellen Spezifikation über Zustandsmaschinen bis hin zur Hochsprachenbeschreibung. Die Simulation kann durch Nachbilden der Hardwareumgebung mittels C++-Funktionen das gesamte zu untersuchende System umfassen. Auch die Softwarekomponente des FPGA-Koprozessors ist in die Simulation einbezogen. Zusätzlich wird die Anwendung moderner Debugging-Verfahren wie Readback und partielle Rekonfiguration unterstützt. Die Ausgabe der Netzlisten erfolgt direkt im XNF- oder EDIF-Format. Beim Einsatz von CHDL muß der Entwickler nur eine einzige Sprache beherrschen, um Anwendungen für FPGA-Koprozessoren zu implementieren: C++. Ein handelsüblicher C++-Kompiler sowie die Place&Route-Software des FPGA-Herstellers reichen aus, um mit CHDL FPGA-Anwendungen zu entwickeln. Es werden keine weiteren Werkzeuge benötigt, insbesondere keine VHDL-Kompiler
    corecore