82,808 research outputs found

    Using Java for distributed computing in the Gaia satellite data processing

    Get PDF
    In recent years Java has matured to a stable easy-to-use language with the flexibility of an interpreter (for reflection etc.) but the performance and type checking of a compiled language. When we started using Java for astronomical applications around 1999 they were the first of their kind in astronomy. Now a great deal of astronomy software is written in Java as are many business applications. We discuss the current environment and trends concerning the language and present an actual example of scientific use of Java for high-performance distributed computing: ESA's mission Gaia. The Gaia scanning satellite will perform a galactic census of about 1000 million objects in our galaxy. The Gaia community has chosen to write its processing software in Java. We explore the manifold reasons for choosing Java for this large science collaboration. Gaia processing is numerically complex but highly distributable, some parts being embarrassingly parallel. We describe the Gaia processing architecture and its realisation in Java. We delve into the astrometric solution which is the most advanced and most complex part of the processing. The Gaia simulator is also written in Java and is the most mature code in the system. This has been successfully running since about 2005 on the supercomputer "Marenostrum" in Barcelona. We relate experiences of using Java on a large shared machine. Finally we discuss Java, including some of its problems, for scientific computing.Comment: Experimental Astronomy, August 201

    A Test Suite for High-Performance Parallel Java

    Get PDF
    The Java programming language has a number of features that make it attractive for writing high-quality, portable parallel programs. A pure object formulation, strong typing and the exception model make programs easier to create, debug, and maintain. The elegant threading provides a simple route to parallelism on shared-memory machines. Anticipating great improvements in numerical performance, this paper presents a suite of simple programs that indicate how a pure Java Navier-Stokes solver might perform. The suite includes a parallel Euler solver. We present results from a 32-processor Hewlett-Packard machine and a 4-processor Sun server. While speedup is excellent on both machines, indicating a high-quality thread scheduler, the single-processor performance needs much improvement

    Badger: Complexity Analysis with Fuzzing and Symbolic Execution

    Full text link
    Hybrid testing approaches that involve fuzz testing and symbolic execution have shown promising results in achieving high code coverage, uncovering subtle errors and vulnerabilities in a variety of software applications. In this paper we describe Badger - a new hybrid approach for complexity analysis, with the goal of discovering vulnerabilities which occur when the worst-case time or space complexity of an application is significantly higher than the average case. Badger uses fuzz testing to generate a diverse set of inputs that aim to increase not only coverage but also a resource-related cost associated with each path. Since fuzzing may fail to execute deep program paths due to its limited knowledge about the conditions that influence these paths, we complement the analysis with a symbolic execution, which is also customized to search for paths that increase the resource-related cost. Symbolic execution is particularly good at generating inputs that satisfy various program conditions but by itself suffers from path explosion. Therefore, Badger uses fuzzing and symbolic execution in tandem, to leverage their benefits and overcome their weaknesses. We implemented our approach for the analysis of Java programs, based on Kelinci and Symbolic PathFinder. We evaluated Badger on Java applications, showing that our approach is significantly faster in generating worst-case executions compared to fuzzing or symbolic execution on their own

    An Evaluation of the X10 Programming Language

    Get PDF
    As predicted by Moore\u27s law, the number of transistors on a chip has been doubled approximately every two years. As miraculous as it sounds, for many years, the extra transistors have massively benefited the whole computer industry, by using the extra transistors to increase CPU clock speed, thus boosting performance. However, due to heat wall and power constraints, the clock speed cannot be increased limitlessly. Hardware vendors now have to take another path other than increasing clock speed, which is to utilize the transistors to increase the number of processor cores on each chip. This hardware structural change presents inevitable challenges to software structure, where single thread targeted software will not benefit from newer chips or may even suffer from lower clock speed. The two fundamental challenges are: 1. How to deal with the stagnation of single core clock speed and cache memory. 2. How to utilize the additional power generated from more cores on a chip. Most software programming languages nowadays have distributed computing support, such as C and Java [1]. Meanwhile, some new programming languages were invented from scratch just to take advantage of the more distributed hardware structures. The X10 Programming Language is one of them. The goal of this project is to evaluate X10 in terms of performance, programmability and tool support
    • …
    corecore