18 research outputs found

    Source Code Similarity and Clone Search

    Get PDF
    Historically, clone detection as a research discipline has focused on devising source code similarity measurement and search solutions to cancel out effects of code reuse in software maintenance. However, it has also been observed that identifying duplications and similar programming patterns can be exploited for pragmatic reuse. Identifying such patterns requires a source code similarity model for detection of Type-1, 2, and 3 clones. Due to the lack of such a model, ad-hoc pattern detection models have been devised as part of state of the art solutions that support pragmatic reuse via code search. In this dissertation, we propose a clone search model which is based on the clone detection principles and satisfies the fundamental requirements for supporting pragmatic reuse. Our research presents a clone search model that not only supports scalability, short response times, and Type-1, 2 and 3 detection, but also emphasizes the need for supporting ranking as a key functionality. Our model takes advantage of a multi-level (non-positional) indexing approach to achieve a scalable and fast retrieval with high recall. Result sets are ranked using two ranking approaches: Jaccard similarity coefficient and the cosine similarity (vector space model) which exploits the code patterns’ local and global frequencies. We also extend the model by adapting a form of semantic search to cover bytecode code. Finally, we demonstrate how the proposed clone search model can be applied for spotting working code examples in the context of pragmatic reuse. Further evidence of the applicability of the clone search model is provided through performance evaluation

    Towards Semantic Clone Detection, Benchmarking, and Evaluation

    Get PDF
    Developers copy and paste their code to speed up the development process. Sometimes, they copy code from other systems or look up code online to solve a complex problem. Developers reuse copied code with or without modifications. The resulting similar or identical code fragments are called code clones. Sometimes clones are unintentionally written when a developer implements the same or similar functionality. Even when the resulting code fragments are not textually similar but implement the same functionality they are still considered to be clones and are classified as semantic clones. Semantic clones are defined as code fragments that perform the exact same computation and are implemented using different syntax. Software cloning research indicates that code clones exist in all software systems; on average, 5% to 20% of software code is cloned. Due to the potential impact of clones, whether positive or negative, it is essential to locate, track, and manage clones in the source code. Considerable research has been conducted on all types of code clones, including clone detection, analysis, management, and evaluation. Despite the great interest in code clones, there has been considerably less work conducted on semantic clones. As described in this thesis, I advance the state-of-the-art in semantic clone research in several ways. First, I conducted an empirical study to investigate the status of code cloning in and across open-source game systems and the effectiveness of different normalization, filtering, and transformation techniques for detecting semantic clones. Second, I developed an approach to detect clones across .NET programming languages using an intermediate language. Third, I developed a technique using an intermediate language and an ontology to detect semantic clones. Fourth, I mined Stack Overflow answers to build a semantic code clone benchmark that represents real semantic code clones in four programming languages, C, C#, Java, and Python. Fifth, I defined a comprehensive taxonomy that identifies semantic clone types. Finally, I implemented an injection framework that uses the benchmark to compare and evaluate semantic code clone detectors by automatically measuring recall

    Codeklonerkennung mit Dominatorinformationen

    Get PDF
    If an existing function in a software project is copied and reused (in a slightly modified version), the result is a code clone. If there was an error or vulnerability in the original function, this error or vulnerability is now contained in several places in the software project. This is one of the reasons why research is being done to develop powerful and scalable clone detection techniques. In this thesis, a new clone detection method is presented that uses paths and path sets derived from the dominator trees of the functions to detect the code clones. A dominator tree is a special form of the control flow graph, which does not contain cycles. The dominator tree based method has been implemented in the StoneDetector tool and can detect code clones in Java source code as well as in Java bytecode. It has equally good or better recall and precision results than previously published code clone detection methods. The evaluation was performed using the BigCloneBench. Scalability measurements showed that even source code with several 100 million lines of code can be searched in a reasonable time. In order to evaluate the bytecode based StoneDetector variant, the BigCloneBench files had to be compiled. For this purpose, the Stubber tool was developed, which can compile Java source code files without the required libraries. Finally, it could be shown that using the register code generated from the Java bytecode, similar recall and precision values could be achieved compared to the source code based variant. Since some machine learning studies specify that very good recall and precision values can be achieved for all clone types, a machine learning method was trained with dominator trees. It could be shown that the results published by the studies are not reproducible on unseen data.Wird eine bestehende Funktion in einem Softwareprojekt kopiert und (in leicht angepasster Form) erneut genutzt, entsteht ein Codeklon. War in der ursprünglichen Funktion jedoch ein Fehler oder eine Schwachstelle, so ist dieser Fehler beziehungsweise diese Schwachstelle jetzt an mehreren Stellen im Softwareprojekt enthalten. Dies ist einer der Gründe, weshalb an der Entwicklung von leistungsstarken und skalierbaren Klonerkennungsverfahren geforscht wird. In der hier vorliegenden Arbeit wird ein neues Klonerkennungsverfahren vorgestellt, das zum Detektieren der Codeklone Pfade und Pfadmengen nutzt, die aus den Dominatorbäumen der Funktionen abgeleitet werden. Ein Dominatorbaum wird aus dem Kontrollflussgraphen abgeleitet und enthält keine Zyklen. Das Dominatorbaum-basierte Verfahren wurde in dem Werkzeug StoneDetector umgesetzt und kann Codeklone sowohl im Java-Quelltext als auch im Java-Bytecode detektieren. Dabei hat es gleich gute oder bessere Recall- und Precision-Werte als bisher veröffentlichte Codeklonerkennungsverfahren. Die Wert-Evaluierungen wurden dabei unter Verwendung des BigClone-Benchs durchgeführt. Skalierbarkeitsmessungen zeigten, dass sogar Quellcodedateien mit mehreren 100-Millionen Codezeilen in angemessener Zeit durchsucht werden können. Damit die Bytecode-basierte StoneDetector-Variante auch evaluiert werden konnte, mussten die Dateien des BigCloneBench kompiliert werden. Dazu wurde das Stubber-Tool entwickelt, welches Java-Quelltextdateien ohne die benötigten Abhängigkeiten kompilieren kann. Schlussendlich konnte somit gezeigt werden, dass mithilfe des aus dem Java-Bytecode generierten Registercodes ähnliche Recall- und Precision-Werte im Vergleich zu der Quelltext-basierten Variante erreicht werden können. Da einige Arbeiten mit maschinellen Lernverfahren angeben, bei allen Klontypen sehr gute Recall- und Precision-Werte zu erreichen, wurde ein maschinelles Lernverfahren mit Dominatoräumen trainiert. Es konnte gezeigt werden, dass die von den Arbeiten veröffentlichten Ergebnisse nicht auf ungesehenen Daten reproduzierbar sind

    Dealing with clones in software : a practical approach from detection towards management

    Get PDF
    Despite the fact that duplicated fragments of code also called code clones are considered one of the prominent code smells that may exist in software, cloning is widely practiced in industrial development. The larger the system, the more people involved in its development and the more parts developed by different teams result in an increased possibility of having cloned code in the system. While there are particular benefits of code cloning in software development, research shows that it might be a source of various troubles in evolving software. Therefore, investigating and understanding clones in a software system is important to manage the clones efficiently. However, when the system is fairly large, it is challenging to identify and manage those clones properly. Among the various types of clones that may exist in software, research shows detection of near-miss clones where there might be minor to significant differences (e.g., renaming of identifiers and additions/deletions/modifications of statements) among the cloned fragments is costly in terms of time and memory. Thus, there is a great demand of state-of-the-art technologies in dealing with clones in software. Over the years, several tools have been developed to detect and visualize exact and similar clones. However, usually the tools are standalone and do not integrate well with a software developer's workflow. In this thesis, first, a study is presented on the effectiveness of a fingerprint based data similarity measurement technique named 'simhash' in detecting clones in large scale code-base. Based on the positive outcome of the study, a time efficient detection approach is proposed to find exact and near-miss clones in software, especially in large scale software systems. The novel detection approach has been made available as a highly configurable and fully fledged standalone clone detection tool named 'SimCad', which can be configured for detection of clones in both source code and non-source code based data. Second, we show a robust use of the clone detection approach studied earlier by assembling its detection service as a portable library named 'SimLib'. This library can provide tightly coupled (integrated) clone detection functionality to other applications as opposed to loosely coupled service provided by a typical standalone tool. Because of being highly configurable and easily extensible, this library allows the user to customize its clone detection process for detecting clones in data having diverse characteristics. We performed a user study to get some feedback on installation and use of the 'SimLib' API (Application Programming Interface) and to uncover its potential use as a third-party clone detection library. Third, we investigated on what tools and techniques are currently in use to detect and manage clones and understand their evolution. The goal was to find how those tools and techniques can be made available to a developer's own software development platform for convenient identification, tracking and management of clones in the software. Based on that, we developed a clone-aware software development platform named 'SimEclipse' to promote the practical use of code clone research and to provide better support for clone management in software. Finally, we evaluated 'SimEclipse' by conducting a user study on its effectiveness, usability and information management. We believe that both researchers and developers would enjoy and utilize the benefit of using these tools in different aspect of code clone research and manage cloned code in software systems

    Management Aspects of Software Clone Detection and Analysis

    Get PDF
    Copying a code fragment and reusing it by pasting with or without minor modifications is a common practice in software development for improved productivity. As a result, software systems often have similar segments of code, called software clones or code clones. Due to many reasons, unintentional clones may also appear in the source code without awareness of the developer. Studies report that significant fractions (5% to 50%) of the code in typical software systems are cloned. Although code cloning may increase initial productivity, it may cause fault propagation, inflate the code base and increase maintenance overhead. Thus, it is believed that code clones should be identified and carefully managed. This Ph.D. thesis contributes in clone management with techniques realized into tools and large-scale in-depth analyses of clones to inform clone management in devising effective techniques and strategies. To support proactive clone management, we have developed a clone detector as a plug-in to the Eclipse IDE. For clone detection, we used a hybrid approach that combines the strength of both parser-based and text-based techniques. To capture clones that are similar but not exact duplicates, we adopted a novel approach that applies a suffix-tree-based k-difference hybrid algorithm, borrowed from the area of computational biology. Instead of targeting all clones from the entire code base, our tool aids clone-aware development by allowing focused search for clones of any code fragment of the developer's interest. A good understanding on the code cloning phenomenon is a prerequisite to devise efficient clone management strategies. The second phase of the thesis includes large-scale empirical studies on the characteristics (e.g., proportion, types of similarity, change patterns) of code clones in evolving software systems. Applying statistical techniques, we also made fairly accurate forecast on the proportion of code clones in the future versions of software projects. The outcome of these studies expose useful insights into the characteristics of evolving clones and their management implications. Upon identification of the code clones, their management often necessitates careful refactoring, which is dealt with at the third phase of the thesis. Given a large number of clones, it is difficult to optimally decide what to refactor and what not, especially when there are dependencies among clones and the objective remains the minimization of refactoring efforts and risks while maximizing benefits. In this regard, we developed a novel clone refactoring scheduler that applies a constraint programming approach. We also introduced a novel effort model for the estimation of efforts needed to refactor clones in source code. We evaluated our clone detector, scheduler and effort model through comparative empirical studies and user studies. Finally, based on our experience and in-depth analysis of the present state of the art, we expose avenues for further research and development towards a versatile clone management system that we envision

    Aspect of Code Cloning Towards Software Bug and Imminent Maintenance: A Perspective on Open-source and Industrial Mobile Applications

    Get PDF
    As a part of the digital era of microtechnology, mobile application (app) development is evolving with lightning speed to enrich our lives and bring new challenges and risks. In particular, software bugs and failures cost trillions of dollars every year, including fatalities such as a software bug in a self-driving car that resulted in a pedestrian fatality in March 2018 and the recent Boeing-737 Max tragedies that resulted in hundreds of deaths. Software clones (duplicated fragments of code) are also found to be one of the crucial factors for having bugs or failures in software systems. There have been many significant studies on software clones and their relationships to software bugs for desktop-based applications. Unfortunately, while mobile apps have become an integral part of today’s era, there is a marked lack of such studies for mobile apps. In order to explore this important aspect, in this thesis, first, we studied the characteristics of software bugs in the context of mobile apps, which might not be prevalent for desktop-based apps such as energy-related (battery drain while using apps) and compatibility-related (different behaviors of same app in different devices) bugs/issues. Using Support Vector Machine (SVM), we classified about 3K mobile app bug reports of different open-source development sites into four categories: crash, energy, functionality and security bug. We then manually examined a subset of those bugs and found that over 50% of the bug-fixing code-changes occurred in clone code. There have been a number of studies with desktop-based software systems that clearly show the harmful impacts of code clones and their relationships to software bugs. Given that there is a marked lack of such studies for mobile apps, in our second study, we examined 11 open-source and industrial mobile apps written in two different languages (Java and Swift) and noticed that clone code is more bug-prone than non-clone code and that industrial mobile apps have a higher code clone ratio than open-source mobile apps. Furthermore, we correlated our study outcomes with those of existing desktop based studies and surveyed 23 mobile app developers to validate our findings. Along with validating our findings from the survey, we noticed that around 95% of the developers usually copy/paste (code cloning) code fragments from the popular Crowd-sourcing platform, Stack Overflow (SO) to their projects and that over 75% of such developers experience bugs after such activities (the code cloning from SO). Existing studies with desktop-based systems also showed that while SO is one of the most popular online platforms for code reuse (and code cloning), SO code fragments are usually toxic in terms of software maintenance perspective. Thus, in the third study of this thesis, we studied the consequences of code cloning from SO in different open source and industrial mobile apps. We observed that closed-source industrial apps even reused more SO code fragments than open-source mobile apps and that SO code fragments were more change-prone (such as bug) than non-SO code fragments. We also experienced that SO code fragments were related to more bugs in industrial projects than open-source ones. Our studies show how we could efficiently and effectively manage clone related software bugs for mobile apps by utilizing the positive sides of code cloning while overcoming (or at least minimizing) the negative consequences of clone fragments

    FORMALIZATION AND DETECTION OF COLLABORATIVE PATTERNS IN SOFTWARE

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Metric Selection and Metric Learning for Matching Tasks

    Get PDF
    A quarter of a century after the world-wide web was born, we have grown accustomed to having easy access to a wealth of data sets and open-source software. The value of these resources is restricted if they are not properly integrated and maintained. A lot of this work boils down to matching; finding existing records about entities and enriching them with information from a new data source. In the realm of code this means integrating new code snippets into a code base while avoiding duplication. In this thesis, we address two different such matching problems. First, we leverage the diverse and mature set of string similarity measures in an iterative semisupervised learning approach to string matching. It is designed to query a user to make a sequence of decisions on specific cases of string matching. We show that we can find almost optimal solutions after only a small amount of such input. The low labelling complexity of our algorithm is due to addressing the cold start problem that is inherent to Active Learning; by ranking queries by variance before the arrival of enough supervision information, and by a self-regulating mechanism that counteracts initial biases. Second, we address the matching of code fragments for deduplication. Programming code is not only a tool, but also a resource that itself demands maintenance. Code duplication is a frequent problem arising especially from modern development practice. There are many reasons to detect and address code duplicates, for example to keep a clean and maintainable codebase. In such more complex data structures, string similarity measures are inadequate. In their stead, we study a modern supervised Metric Learning approach to model code similarity with Neural Networks. We find that in such a model representing the elementary tokens with a pretrained word embedding is the most important ingredient. Our results show both qualitatively (by visualization) that relatedness is modelled well by the embeddings and quantitatively (by ablation) that the encoded information is useful for the downstream matching task. As a non-technical contribution, we unify the common challenges arising in supervised learning approaches to Record Matching, Code Clone Detection and generic Metric Learning tasks. We give a novel account to string similarity measures from a psychological standpoint and point out and document one longstanding naming conflict in string similarity measures. Finally, we point out the overlap of latest research in Code Clone Detection with the field of Natural Language Processing
    corecore