883 research outputs found

    A qualitative assessment of modularity in CaesarJ components based on implementations of design patterns

    Get PDF
    Tese de Mestrado em Engenharia InformáticaThe advent of the Aspect-Oriented Programming (AOP) paradigm brought new features and mechanisms to support the separation of crosscutting concerns, in order to develop programs with higher modularity and consequently, higher reuse. As the paradigm matures, various aspectoriented programming languages appeared that propose varying ways to realize the paradigm’s concepts. CaesarJ is one of those aspect-oriented languages. While the majority of practical studies on AOP languages focused on the AspectJ language, the characteristics of other languages such as CaesarJ remain to be explored. The lack of research on the utilization of CaesarJ in concrete cases leads to the existence of few case studies from which to draw considerations about their strengths and shortcomings. In the past, implementations of design patterns have been used for the demonstration of the characteristics of the programming languages used to implement them. This dissertation follows a similar approach to assess CaesarJ’s support for modularity and reuse by producing CaesarJ design patterns implementations and subjecting those implementations to a qualitative analysis. This dissertation presents CaesarJ implementations of eleven Gang-of-Four pattern that serve as the basis for a qualitative analysis of the modularity degree CaesarJ enables for each pattern. A distinction is made between four levels of module reuse that the implementations support, in order to differentiate between the several levels of reuse achieved. A comparison is drawn to analogue design pattern implementations in AspectJ. Finally, general guidelines for the implementation of CaesarJ components are described

    A Component-Based Dataflow Framework for Simulation and Visualization

    Get PDF

    A Component-Based Dataflow Framework for Simulation and Visualization

    Get PDF

    Concrete Syntax with Black Box Parsers

    Get PDF
    Context: Meta programming consists for a large part of matching, analyzing, and transforming syntax trees. Many meta programming systems process abstract syntax trees, but this requires intimate knowledge of the structure of the data type describing the abstract syntax. As a result, meta programming is error-prone, and meta programs are not resilient to evolution of the structure of such ASTs, requiring invasive, fault-prone change to these programs. Inquiry: Concrete syntax patterns alleviate this problem by allowing the meta programmer to match and create syntax trees using the actual syntax of the object language. Systems supporting concrete syntax patterns, however, require a concrete grammar of the object language in their own formalism. Creating such grammars is a costly and error-prone process, especially for realistic languages such as Java and C++. Approach: In this paper we present Concretely, a technique to extend meta programming systems with pluggable concrete syntax patterns, based on external, black box parsers. We illustrate Concretely in the context of Rascal, an open-source meta programming system and language workbench, and show how to reuse existing parsers for Java, JavaScript, and C++. Furthermore, we propose Tympanic, a DSL to declaratively map external AST structures to Rascal's internal data structures. Tympanic allows implementors of Concretely to solve the impedance mismatch between object-oriented class hierarchies in Java and Rascal's algebraic data types. Both the algebraic data type and AST marshalling code is automatically generated. Knowledge: The conceptual architecture of Concretely and Tympanic supports the reuse of pre-existing, external parsers, and their AST representation in meta programming systems that feature concrete syntax patterns for matching and constructing syntax trees. As such this opens up concrete syntax pattern matching for a host of realistic languages for which writing a grammar from scratch is time consuming and error-prone, but for which industry-strength parsers exist in the wild. Grounding: We evaluate Concretely in terms of source lines of code (SLOC), relative to the size of the AST data type and marshalling code. We show that for real programming languages such as C++ and Java, adding support for concrete syntax patterns takes an effort only in the order of dozens of SLOC. Similarly, we evaluate Tympanic in terms of SLOC, showing an order of magnitude of reduction in SLOC compared to manual implementation of the AST data types and marshalling code. Importance: Meta programming has applications in reverse engineering, reengineering, source code analysis, static analysis, software renovation, domain-specific language engineering, and many others. Processing of syntax trees is central to all of these tasks. Concrete syntax patterns improve the practice of constructing meta programs. The combination of Concretely and Tympanic has the potential to make concrete syntax patterns available with very little effort, thereby improving and promoting the application of meta programming in the general software engineering context

    Combining Object Orientation and Dataflow Modeling in the VISSION Simulation System

    Get PDF

    Combining Object Orientation and Dataflow Modeling in the VISSION Simulation System

    Get PDF

    Combining Object Orientation and Dataflow Modeling in the VISSION Simulation System

    Get PDF

    Multiple dispatch in practice

    Full text link
    Multiple dispatch uses the run time types of more than one argument to a method call to determine which method body to run. While several languages over the last 20 years have provided multiple dispatch, most object-oriented languages still support only single dispatch — forcing programmers to implement multiple dispatch manually when required. This paper presents an empirical study of the use of multiple dispatch in practice, considering six languages that support multiple dispatch, and also investigating the potential for multiple dispatch in Java programs. We hope that this study will help programmers understand the uses and abuses of multiple dispatch; virtual machine implementors optimise multiple dispatch; and language designers to evaluate the choice of providing multiple dispatch in new programming languages

    Safety-Critical Java for Embedded Systems

    Get PDF
    • …
    corecore