1,252 research outputs found

    Towards a debugging tutor for object-oriented environments

    Get PDF
    Programming has provided a rich domain for Artificial Intelligence in Education and many systems have been developed to advise students about the bugs in their programs, either during program development or post-hoc. Surprisingly few systems have been developed specifically to teach debugging. Learning environment builders have assumed that either the student will be taught these elsewhere or thatthey will be learnt piecemeal without explicit advice.This paper reports on two experiments on Java debugging strategy by novice programmers and discusses their implications for the design of a debugging tutor for Java that pays particular attention to how students use the variety of program representations available. The experimental results are in agreement with research in the area that suggests that good debugging performance is associated with a balanced use ofthe available representations and a sophisticated use of the debugging step facility which enables programmers to detect and obtain information from critical momentsin the execution of the program. A balanced use of the available representations seemsto be fostered by providing representations with a higher degree of dynamic linkingas well as by explicit instruction about the representation formalism employed in the program visualisations

    Teaching programming at a distance: the Internet software visualization laboratory

    Get PDF
    This paper describes recent developments in our approach to teaching computer programming in the context of a part-time Masters course taught at a distance. Within our course, students are sent a pack which contains integrated text, software and video course material, using a uniform graphical representation to tell a consistent story of how the programming language works. The students communicate with their tutors over the phone and through surface mail. Through our empirical studies and experience teaching the course we have identified four current problems: (i) students' difficulty mapping between the graphical representations used in the course and the programs to which they relate, (ii) the lack of a conversational context for tutor help provided over the telephone, (iii) helping students who due to their other commitments tend to study at 'unsociable' hours, and (iv) providing software for the constantly changing and expanding range of platforms and operating systems used by students. We hope to alleviate these problems through our Internet Software Visualization Laboratory (ISVL), which supports individual exploration, and both synchronous and asynchronous communication. As a single user, students are aided by the extra mappings provided between the graphical representations used in the course and their computer programs, overcoming the problems of the original notation. ISVL can also be used as a synchronous communication medium whereby one of the users (generally the tutor) can provide an annotated demonstration of a program and its execution, a far richer alternative to technical discussions over the telephone. Finally, ISVL can be used to support asynchronous communication, helping students who work at unsociable hours by allowing the tutor to prepare short educational movies for them to view when convenient. The ISVL environment runs on a conventional web browser and is therefore platform independent, has modest hardware and bandwidth requirements, and is easy to distribute and maintain. Our planned experiments with ISVL will allow us to investigate ways in which new technology can be most appropriately applied in the service of distance education

    Interviews With College Students: Evaluating Computer Programming Environments For Introductory Courses

    Get PDF
    Different methods, strategies, or tools have been proposed for teaching Object Oriented Programming (OOP). However, it is still difficult to introduce OOP to novice learners. The problem may be not only adopting a method or language, but also use of an appropriate integrated development environment (IDE). Therefore, the focus should be on the needs of learners when selecting an IDE and the evaluations for instructional purposes may allow making objective decisions for an introductory course design. There are different methods or frameworks for evaluating IDEs and the majority focuses on the experts’ needs. Unfortunately, studies done on instructional appropriateness of IDEs are insufficient. In this study, an evaluation framework is initially proposed, then the candidate IDEs are evaluated, and finally, the perceptions of college students are explored by conducting semi-structured interviews. The data are analyzed by the Verbal Analysis technique, and the results are discussed in view of the evaluation criteria. The results imply that the learners view one of the criteria relatively more supportive for learning

    Representational Learning Approach for Predicting Developer Expertise Using Eye Movements

    Get PDF
    The thesis analyzes an existing eye-tracking dataset collected while software developers were solving bug fixing tasks in an open-source system. The analysis is performed using a representational learning approach namely, Multi-layer Perceptron (MLP). The novel aspect of the analysis is the introduction of a new feature engineering method based on the eye-tracking data. This is then used to predict developer expertise on the data. The dataset used in this thesis is inherently more complex because it is collected in a very dynamic environment i.e., the Eclipse IDE using an eye-tracking plugin, iTrace. Previous work in this area only worked on short code snippets that do not represent how developers usually program in a realistic setting. A comparative analysis between representational learning and non-representational learning (Support Vector Machine, Naive Bayes, Decision Tree, and Random Forest) is also presented. The results are obtained from an extensive set of experiments (with an 80/20 training and testing split) which show that representational learning (MLP) works well on our dataset reporting an average higher accuracy of 30% more for all tasks. Furthermore, a state-of-the-art method for feature engineering is proposed to extract features from the eye-tracking data. The average accuracy on all the tasks is 93.4% with a recall of 78.8% and an F1 score of 81.6%. We discuss the implications of these results on the future of automated prediction of developer expertise. Adviser: Bonita Shari

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Dynamic Assembly for System Adaptability, Dependability, and Assurance

    Get PDF
    (DASASA) ProjectAuthor-contributed print ite
    • 

    corecore