13,998 research outputs found

    Java Concurrency in Practice

    Get PDF

    Developing numerical libraries in Java

    Full text link
    The rapid and widespread adoption of Java has created a demand for reliable and reusable mathematical software components to support the growing number of compute-intensive applications now under development, particularly in science and engineering. In this paper we address practical issues of the Java language and environment which have an effect on numerical library design and development. Benchmarks which illustrate the current levels of performance of key numerical kernels on a variety of Java platforms are presented. Finally, a strategy for the development of a fundamental numerical toolkit for Java is proposed and its current status is described.Comment: 11 pages. Revised version of paper presented to the 1998 ACM Conference on Java for High Performance Network Computing. To appear in Concurrency: Practice and Experienc

    Jeeg: Temporal Constraints for the Synchronization of Concurrent Objects

    No full text
    We introduce Jeeg, a dialect of Java based on a declarative replacement of the synchronization mechanisms of Java that results in a complete decoupling of the 'business' and the 'synchronization' code of classes. Synchronization constraints in Jeeg are expressed in a linear temporal logic which allows to effectively limit the occurrence of the inheritance anomaly that commonly affects concurrent object oriented languages. Jeeg is inspired by the current trend in aspect oriented languages. In a Jeeg program the sequential and concurrent aspects of object behaviors are decoupled: specified separately by the programmer these are then weaved together by the Jeeg compiler

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    Life of occam-Pi

    Get PDF
    This paper considers some questions prompted by a brief review of the history of computing. Why is programming so hard? Why is concurrency considered an “advanced” subject? What’s the matter with Objects? Where did all the Maths go? In searching for answers, the paper looks at some concerns over fundamental ideas within object orientation (as represented by modern programming languages), before focussing on the concurrency model of communicating processes and its particular expression in the occam family of languages. In that focus, it looks at the history of occam, its underlying philosophy (Ockham’s Razor), its semantic foundation on Hoare’s CSP, its principles of process oriented design and its development over almost three decades into occam-? (which blends in the concurrency dynamics of Milner’s ?-calculus). Also presented will be an urgent need for rationalisation – occam-? is an experiment that has demonstrated significant results, but now needs time to be spent on careful review and implementing the conclusions of that review. Finally, the future is considered. In particular, is there a future

    Permission-Based Separation Logic for Multithreaded Java Programs

    Get PDF
    This paper motivates and presents a program logic for reasoning about multithreaded Java-like programs with concurrency primitives such as dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits.\ud This paper presents the basic principles to reason about thread creation and thread joining. It finishes with an outlook how this logic will evolve into a full-fledged verification technique for Java (and possibly other multithreaded languages)

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    A Programming Language for Web Service Development

    Get PDF
    There is now widespread acceptance of Web services and service-oriented architectures. But despite the agreement on key Web services standards there remain many challenges. Programming environments based on WSDL support go some way to facilitating Web service development. However Web services fundamentally rely on XML and Schema, not on contemporary programming language type systems such as those of Java or .NET. Moreover, Web services are based on a messaging paradigm and hence bring forward the traditional problems of messaging systems including concurrency control and message correlation. It is easy to write simple synchronous Web services using traditional programming languages; however more realistic scenarios are surprisingly difficult to implement. To alleviate these issues we propose a programming language which directly supports Web service development. The language leverages XQuery for native XML processing, supports implicit message correlation and has high level join calculus-style concurrency control. We illustrate the features of the language through a motivating example

    Modularizing and Specifying Protocols among Threads

    Full text link
    We identify three problems with current techniques for implementing protocols among threads, which complicate and impair the scalability of multicore software development: implementing synchronization, implementing coordination, and modularizing protocols. To mend these deficiencies, we argue for the use of domain-specific languages (DSL) based on existing models of concurrency. To demonstrate the feasibility of this proposal, we explain how to use the model of concurrency Reo as a high-level protocol DSL, which offers appropriate abstractions and a natural separation of protocols and computations. We describe a Reo-to-Java compiler and illustrate its use through examples.Comment: In Proceedings PLACES 2012, arXiv:1302.579

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene
    corecore