159 research outputs found

    Minimal Involutive Bases

    Full text link
    In this paper we present an algorithm for construction of minimal involutive polynomial bases which are Groebner bases of the special form. The most general involutive algorithms are based on the concept of involutive monomial division which leads to partition of variables into multiplicative and non-multiplicative. This partition gives thereby the self-consistent computational procedure for constructing an involutive basis by performing non-multiplicative prolongations and multiplicative reductions. Every specific involutive division generates a particular form of involutive computational procedure. In addition to three involutive divisions used by Thomas, Janet and Pommaret for analysis of partial differential equations we define two new ones. These two divisions, as well as Thomas division, do not depend on the order of variables. We prove noetherity, continuity and constructivity of the new divisions that provides correctness and termination of involutive algorithms for any finite set of input polynomials and any admissible monomial ordering. We show that, given an admissible monomial ordering, a monic minimal involutive basis is uniquely defined and thereby can be considered as canonical much like the reduced Groebner basis.Comment: 22 page

    Involutive Bases Algorithm Incorporating F5 Criterion

    Full text link
    Faugere's F5 algorithm is the fastest known algorithm to compute Groebner bases. It has a signature-based and an incremental structure that allow to apply the F5 criterion for deletion of unnecessary reductions. In this paper, we present an involutive completion algorithm which outputs a minimal involutive basis. Our completion algorithm has a nonincremental structure and in addition to the involutive form of Buchberger's criteria it applies the F5 criterion whenever this criterion is applicable in the course of completion to involution. In doing so, we use the G2V form of the F5 criterion developed by Gao, Guan and Volny IV. To compare the proposed algorithm, via a set of benchmarks, with the Gerdt-Blinkov involutive algorithm (which does not apply the F5 criterion) we use implementations of both algorithms done on the same platform in Maple.Comment: 24 pages, 2 figure

    Involutive Division Technique: Some Generalizations and Optimizations

    Full text link
    In this paper, in addition to the earlier introduced involutive divisions, we consider a new class of divisions induced by admissible monomial orderings. We prove that these divisions are noetherian and constructive. Thereby each of them allows one to compute an involutive Groebner basis of a polynomial ideal by sequentially examining multiplicative reductions of nonmultiplicative prolongations. We study dependence of involutive algorithms on the completion ordering. Based on properties of particular involutive divisions two computational optimizations are suggested. One of them consists in a special choice of the completion ordering. Another optimization is related to recomputing multiplicative and nonmultiplicative variables in the course of the algorithm.Comment: 19 page
    corecore