3,315 research outputs found

    Gr\"obner Bases and Generation of Difference Schemes for Partial Differential Equations

    Full text link
    In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gr\"obner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gr\"obner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Involutive Division Technique: Some Generalizations and Optimizations

    Full text link
    In this paper, in addition to the earlier introduced involutive divisions, we consider a new class of divisions induced by admissible monomial orderings. We prove that these divisions are noetherian and constructive. Thereby each of them allows one to compute an involutive Groebner basis of a polynomial ideal by sequentially examining multiplicative reductions of nonmultiplicative prolongations. We study dependence of involutive algorithms on the completion ordering. Based on properties of particular involutive divisions two computational optimizations are suggested. One of them consists in a special choice of the completion ordering. Another optimization is related to recomputing multiplicative and nonmultiplicative variables in the course of the algorithm.Comment: 19 page

    Transitive Lie algebras of vector fields---an overview

    Full text link
    This overview paper is intended as a quick introduction to Lie algebras of vector fields. Originally introduced in the late 19th century by Sophus Lie to capture symmetries of ordinary differential equations, these algebras, or infinitesimal groups, are a recurring theme in 20th-century research on Lie algebras. I will focus on so-called transitive or even primitive Lie algebras, and explain their theory due to Lie, Morozov, Dynkin, Guillemin, Sternberg, Blattner, and others. This paper gives just one, subjective overview of the subject, without trying to be exhaustive.Comment: 20 pages, written after the Oberwolfach mini-workshop "Algebraic and Analytic Techniques for Polynomial Vector Fields", December 2010 2nd version, some minor typo's corrected and some references adde

    A point symmetry based method for transforming ODEs with three-dimensional symmetry algebras to their canonical forms

    Full text link
    We provide an algorithmic approach to the construction of point transformations for scalar ordinary differential equations that admit three-dimensional symmetry algebras which lead to their respective canonical forms

    Fraction-free algorithm for the computation of diagonal forms matrices over Ore domains using Gr{\"o}bner bases

    Full text link
    This paper is a sequel to "Computing diagonal form and Jacobson normal form of a matrix using Groebner bases", J. of Symb. Computation, 46 (5), 2011. We present a new fraction-free algorithm for the computation of a diagonal form of a matrix over a certain non-commutative Euclidean domain over a computable field with the help of Gr\"obner bases. This algorithm is formulated in a general constructive framework of non-commutative Ore localizations of GG-algebras (OLGAs). We split the computation of a normal form of a matrix into the diagonalization and the normalization processes. Both of them can be made fraction-free. For a matrix MM over an OLGA we provide a diagonalization algorithm to compute U,VU,V and DD with fraction-free entries such that UMV=DUMV=D holds and DD is diagonal. The fraction-free approach gives us more information on the system of linear functional equations and its solutions, than the classical setup of an operator algebra with rational functions coefficients. In particular, one can handle distributional solutions together with, say, meromorphic ones. We investigate Ore localizations of common operator algebras over K[x]K[x] and use them in the unimodularity analysis of transformation matrices U,VU,V. In turn, this allows to lift the isomorphism of modules over an OLGA Euclidean domain to a polynomial subring of it. We discuss the relation of this lifting with the solutions of the original system of equations. Moreover, we prove some new results concerning normal forms of matrices over non-simple domains. Our implementation in the computer algebra system {\sc Singular:Plural} follows the fraction-free strategy and shows impressive performance, compared with methods which directly use fractions. Since we experience moderate swell of coefficients and obtain simple transformation matrices, the method we propose is well suited for solving nontrivial practical problems.Comment: 25 pages, to appear in Journal of Symbolic Computatio
    corecore