248 research outputs found

    Jacobian Adaptation of HMM with Initial Model Selection for Noisy Speech Recognition

    Get PDF
    An extension of Jacobian Adaptation (JA) of HMMs for degraded speech recognition is presented in which appropriate set of initial models is selected from a number of initial-model sets designed for different noise environments. Based on the first order Taylor series approximation in the acoustic feature domain, JA adapts the acoustic model parameters trained in the initial noise environment A to the new environment B much faster than PMC that creates the acoustic models for the target environment from scratch. Despite the advantage of JA to PMC, JA has a theoretical limitation that the change of acoustic parameters from the environment A to B should be small in order that the linear approximation holds. To extend the coverage of JA, the ideas of multiple sets of initial models and their automatic selection scheme are discussed. Speaker-dependent isolated-word recognition experiments are carried out to evaluate the proposed method

    Acoustic Adaptation to Dynamic Background Conditions with Asynchronous Transformations

    Get PDF
    This paper proposes a framework for performing adaptation to complex and non-stationary background conditions in Automatic Speech Recognition (ASR) by means of asynchronous Constrained Maximum Likelihood Linear Regression (aCMLLR) transforms and asynchronous Noise Adaptive Training (aNAT). The proposed method aims to apply the feature transform that best compensates the background for every input frame. The implementation is done with a new Hidden Markov Model (HMM) topology that expands the usual left-to-right HMM into parallel branches adapted to different background conditions and permits transitions among them. Using this, the proposed adaptation does not require ground truth or previous knowledge about the background in each frame as it aims to maximise the overall log-likelihood of the decoded utterance. The proposed aCMLLR transforms can be further improved by retraining models in an aNAT fashion and by using speaker-based MLLR transforms in cascade for an efficient modelling of background effects and speaker. An initial evaluation in a modified version of the WSJCAM0 corpus incorporating 7 different background conditions provides a benchmark in which to evaluate the use of aCMLLR transforms. A relative reduction of 40.5% in Word Error Rate (WER) was achieved by the combined use of aCMLLR and MLLR in cascade. Finally, this selection of techniques was applied in the transcription of multi-genre media broadcasts, where the use of aNAT training, aCMLLR transforms and MLLR transforms provided a relative improvement of 2–3%

    Noise invariant frame selection: a simple method to address the background noise problem for text-independent speaker verification

    Get PDF
    The performance of speaker-related systems usually degrades heavily in practical applications largely due to the background noise. To improve the robustness of such systems in unknown noisy environments, this paper proposes a simple pre-processing method called Noise Invariant Frame Selection (NIFS). Based on several noisy constraints, it selects noise invariant frames from utterances to represent speakers. Experiments conducted on the TIMIT database showed that the NIFS can significantly improve the performance of Vector Quantization (VQ), Gaussian Mixture Model-Universal Background Model (GMM-UBM) and i-vector-based speaker verification systems in different unknown noisy environments with different SNRs, in comparison to their baselines. Meanwhile, the proposed NIFS-based speaker systems has achieves similar performance when we change the constraints (hyper-parameters) or features, which indicates that it is easy to reproduce. Since NIFS is designed as a general algorithm, it could be further applied to other similar tasks

    A Particle Filter Compensation Approach to Robust Speech Recognition

    Get PDF

    Subspace Gaussian mixture models for automatic speech recognition

    Get PDF
    In most of state-of-the-art speech recognition systems, Gaussian mixture models (GMMs) are used to model the density of the emitting states in the hidden Markov models (HMMs). In a conventional system, the model parameters of each GMM are estimated directly and independently given the alignment. This results a large number of model parameters to be estimated, and consequently, a large amount of training data is required to fit the model. In addition, different sources of acoustic variability that impact the accuracy of a recogniser such as pronunciation variation, accent, speaker factor and environmental noise are only weakly modelled and factorized by adaptation techniques such as maximum likelihood linear regression (MLLR), maximum a posteriori adaptation (MAP) and vocal tract length normalisation (VTLN). In this thesis, we will discuss an alternative acoustic modelling approach — the subspace Gaussian mixture model (SGMM), which is expected to deal with these two issues better. In an SGMM, the model parameters are derived from low-dimensional model and speaker subspaces that can capture phonetic and speaker correlations. Given these subspaces, only a small number of state-dependent parameters are required to derive the corresponding GMMs. Hence, the total number of model parameters can be reduced, which allows acoustic modelling with a limited amount of training data. In addition, the SGMM-based acoustic model factorizes the phonetic and speaker factors and within this framework, other source of acoustic variability may also be explored. In this thesis, we propose a regularised model estimation for SGMMs, which avoids overtraining in case that the training data is sparse. We will also take advantage of the structure of SGMMs to explore cross-lingual acoustic modelling for low-resource speech recognition. Here, the model subspace is estimated from out-domain data and ported to the target language system. In this case, only the state-dependent parameters need to be estimated which relaxes the requirement of the amount of training data. To improve the robustness of SGMMs against environmental noise, we propose to apply the joint uncertainty decoding (JUD) technique that is shown to be efficient and effective. We will report experimental results on the Wall Street Journal (WSJ) database and GlobalPhone corpora to evaluate the regularisation and cross-lingual modelling of SGMMs. Noise compensation using JUD for SGMM acoustic models is evaluated on the Aurora 4 database

    Vocal Tract Length Normalization for Statistical Parametric Speech Synthesis

    Get PDF
    Vocal tract length normalization (VTLN) has been successfully used in automatic speech recognition for improved performance. The same technique can be implemented in statistical parametric speech synthesis for rapid speaker adaptation during synthesis. This paper presents an efficient implementation of VTLN using expectation maximization and addresses the key challenges faced in implementing VTLN for synthesis. Jacobian normalization, high dimensionality features and truncation of the transformation matrix are a few challenges presented with the appropriate solutions. Detailed evaluations are performed to estimate the most suitable technique for using VTLN in speech synthesis. Evaluating VTLN in the framework of speech synthesis is also not an easy task since the technique does not work equally well for all speakers. Speakers have been selected based on different objective and subjective criteria to demonstrate the difference between systems. The best method for implementing VTLN is confirmed to be use of the lower order features for estimating warping factors
    • …
    corecore